Learn R Programming

circular (version 0.1)

mle.vonmises.bootstrap.ci: Bootstrap Confidence Intervals

Description

Generates simple bootstrap confidence intervals for the parameters of a von Mises distribtution: the mean direction mu, and the concentration parameter kappa.

Usage

mle.vonmises.bootstrap.ci(x, mu, bias = FALSE, alpha = 0.05, reps = 1000)
## S3 method for class 'mle.vonmises.bootstrap.ci':
print(x, \dots)

Arguments

x
vector of angular measurements in radians.
mu
bias
logical, if TRUE, the replication estimates for kappa are computed with a bias corrected method. See mle.vonmises. Default is FALSE, i.e. no bias correction.
alpha
parameter determining level of confidence intervals. 1-alpha confidence intervals for mu and kappa are computed. By default, 95% confidence intervals are generated.
reps
number of resampled data sets to use. Default is 1000.
...
arguments passed to print.default.

Value

  • A list is returned with the following components:
  • mu.cilimits of the confidence interval for mu
  • kappa.cilimits of the confidence interval for kappa
  • muestimate of mu
  • kappaestimate of kappa

Details

Percentile confidence intervals are computed by resampling from the original data set reps times. For each resampled data set, the MLE's of mu and kappa are computed. The bootstrap confidence intervals are the alpha/2 and 1-alpha/2 percentiles of the reps MLE's computed for each resampled data set.

See Also

mle.vonmises

Examples

Run this code
x <- rvonmises(n=25, mu=0, kappa=3)
x.bs <- mle.vonmises.bootstrap.ci(x, alpha=.10)
par(mfcol=c(1,2))
rose.diag(x.bs$mu, bins=30, main=expression(mu))
hist(x.bs$kappa, main=expression(kappa))

Run the code above in your browser using DataLab