Learn R Programming

circular (version 0.1)

mle.wrappedcauchy: Wrapped Cauchy Maximum Likelihood Estimates

Description

Computes the maximum likelihood estimates for the parameters of a Wrapped Cauchy distribution: mean and concentration parameter.

Usage

mle.wrappedcauchy(x, mu, rho, tol = 1e-15, max.iter = 100)
## S3 method for class 'mle.wrappedcauchy':
print(x,
        digits = max(3, getOption("digits") - 3), ...)

Arguments

x
a vector. The object is coerced to class circular.
mu
if missing the maximum likelihood estimate of the mean direction is calculated.
rho
if missing the maximum likelihood estimate of the concentration parameter is calculated.
tol
precision of the estimation.
max.iter
maximum number of iterations.
digits
integer indicating the precision to be used.
...
further arguments passed to or from other methods.

Value

  • Returns a list with the following components:
  • callthe match.call().
  • muthe estimate of the mean direction or the value supplied.
  • rhothe estimate of the concentration parameter or the value supplied
  • convergenceTRUE if convergence is achieved.

References

Jammalamadaka, S. Rao and SenGupta, A. (2001). Topics in Circular Statistics, Section 4.2.1, World Scientific Press, Singapore.

See Also

mean.circular

Examples

Run this code
x <- rwrappednormal(n=50, mu=0, rho=0.5)
mle.wrappednormal(x) # estimation of mu and rho
mle.wrappednormal(x, mu=0) # estimation of rho only

Run the code above in your browser using DataLab