Usage
mle.wrappednormal(x, mu, rho, sd, K, tol = 1e-05, min.sd = 0.001, min.k = 10,
max.iter = 100, verbose = FALSE)
## S3 method for class 'mle.wrappednormal':
print(x,
digits = max(3, getOption("digits") - 3), ...)
Arguments
x
a vector. The object is coerced to class
circular
. mu
if missing the maximum likelihood estimate of the mean
direction is calculated.
rho
if missing the maximum likelihood estimate of the
concentration parameter is calculated.
sd
standard deviation of the (unwrapped) normal. Used as an
alternative parametrization.
K
number of terms to be used in approximating the density.
tol
precision of the estimation.
min.sd
minimum value should be reached by the search procedure
for the standard deviation parameter.
min.k
minimum number of terms used in approximating the density.
max.iter
maximum number of iterations.
verbose
logical, if TRUE
information on the convergence
process are printed.
digits
integer indicating the precision to be used.
...
further arguments passed to or from other methods.