# Explaining the classification of an Iris instance with lda model.
# We use a versicolor (instance 100).
library(MASS)
test.ind <- 100
iris_test <- iris[test.ind, 1:4]
iris_train <- iris[-test.ind, 1:4]
iris_lab <- iris[[5]][-test.ind]
model <- lda(iris_train, iris_lab)
# Create CIU object
ciu <- ciu.new(model, Species~., iris)
# Get ciu.meta.result. This can either be 'ciu$meta.explain(...)'
# or 'ciu.meta.explain(ciu, ...)'
ciu.meta <- ciu$meta.explain(iris_test)
# Use same result for different visualisations.
ciu$ggplot.col.ciu(ciu.meta = ciu.meta)
ciu$barplot.ciu(ind.output = 2, ciu.meta = ciu.meta)
ciu$pie.ciu(ind.output = 2, ciu.meta = ciu.meta)
if (FALSE) {
# Same with Boston Housing data set.
library(caret)
gbm <- train(medv ~ ., Boston, method="gbm", trControl=trainControl(method="cv", number=10))
ciu <- ciu.new(gbm, medv~., Boston)
instance <- Boston[370,1:13]
ciu.meta <- ciu$meta.explain(instance)
ciu$barplot.ciu(ciu.meta = ciu.meta, sort = "CI")
ciu$pie.ciu(ciu.meta = ciu.meta)
ciu$ggplot.col.ciu(ciu.meta = ciu.meta)
}
Run the code above in your browser using DataLab