The function provides a uniform interface to finding class intervals for continuous numerical variables, for example for choosing colours or symbols for plotting. Class intervals are non-overlapping, and the classes are left-closed --- see findInterval
. Argument values to the style chosen are passed through the dot arguments. classIntervals2shingle
converts a classIntervals
object into a shingle. Labels generated in methods are like those found in cut
unless cutlabels=FALSE.
classIntervals(var, n, style = "quantile", rtimes = 3, ...,
intervalClosure = c("left", "right"), dataPrecision = NULL)
# S3 method for classIntervals
plot(x, pal, ...)
# S3 method for classIntervals
print(x, digits = getOption("digits"), ...,
under="under", over="over", between="-", cutlabels=TRUE, unique=FALSE)
nPartitions(x)
classIntervals2shingle(x)
a continuous numerical variable
number of classes required, if missing, nclass.Sturges
is used
chosen style: one of "fixed", "sd", "equal", "pretty", "quantile", "kmeans", "hclust", "bclust", "fisher", or "jenks"
number of replications of var to catenate and jitter; may be used with styles "kmeans" or "bclust" in case they have difficulties reaching a classification
default “left”, allows specification of whether partition intervals are closed on the left or the right (added by Richard Dunlap). Note that the sense of interval closure is hard-coded as “right”-closed whenstyle="jenks"
(see Details below).
default NULL, permits rounding of the interval endpoints (added by Richard Dunlap)
arguments to be passed to the functions called in each style
"classIntervals" object for printing, conversion to shingle, or plotting
character string value for "under" in printed table labels if cutlabels=FALSE
character string value for "over" in printed table labels if cutlabels=FALSE
character string value for "between" in printed table labels if cutlabels=FALSE
minimal number of significant digits in printed table labels
default TRUE, use cut-style labels in printed table labels
default FALSE; if TRUE, collapse labels of single-value classes
a character vector of at least two colour names for colour coding the class intervals in an ECDF plot; colorRampPalette
is used internally to create the correct number of colours
an object of class "classIntervals":
the input variable
a vector of breaks
the style used
parameter values used in finding breaks
number of different finite values in the input variable
this function's call
string, whether closure is “left” or “right”
the data precision used for printing interval values in the legend returned by findColours
, and in the print
method for classIntervals objects. If intervalClosure is “left”, the value returned is ceiling
of the data value multiplied by 10 to the dataPrecision power, divided by 10 to the dataPrecision power.
The "fixed" style permits a "classIntervals" object to be specified with given breaks, set in the fixedBreaks
argument; the length of fixedBreaks
should be n+1; this style can be used to insert rounded break values.
The "sd" style chooses breaks based on pretty
of the centred and scaled variables, and may have a number of classes different from n; the returned par=
includes the centre and scale values.
The "equal" style divides the range of the variable into n parts.
The "pretty" style chooses a number of breaks not necessarily equal to n using pretty
, but likely to be legible; arguments to pretty
may be passed through …
.
The "quantile" style provides quantile breaks; arguments to quantile
may be passed through …
.
The "kmeans" style uses kmeans
to generate the breaks; it may be anchored using set.seed
; the pars
attribute returns the kmeans object generated; if kmeans
fails, a jittered input vector containing rtimes
replications of var
is tried --- with few unique values in var
, this can prove necessary; arguments to kmeans
may be passed through …
.
The "hclust" style uses hclust
to generate the breaks using hierarchical clustering; the pars
attribute returns the hclust object generated, and can be used to find other breaks using getHclustClassIntervals
; arguments to hclust
may be passed through …
.
The "bclust" style uses bclust
to generate the breaks using bagged clustering; it may be anchored using set.seed
; the pars
attribute returns the bclust object generated, and can be used to find other breaks using getBclustClassIntervals
; if bclust
fails, a jittered input vector containing rtimes
replications of var
is tried --- with few unique values in var
, this can prove necessary; arguments to bclust
may be passed through …
.
The "fisher" style uses the algorithm proposed by W. D. Fisher (1958) and discussed by Slocum et al. (2005) as the Fisher-Jenks algorithm; added here thanks to Hisaji Ono.
The "jenks" style has been ported from Jenks' Basic code, and has been checked for consistency with ArcView, ArcGIS, and MapInfo (with some remaining differences); added here thanks to Hisaji Ono. Note that the sense of interval closure is reversed from the other styles, and in this implementation has to be right-closed - use cutlabels=TRUE in findColours
on the object returned to show the closure clearly, and use findCols
to extract the classes for each value.
Armstrong, M. P., Xiao, N., Bennett, D. A., 2003. "Using genetic algorithms to create multicriteria class intervals for choropleth maps". Annals, Association of American Geographers, 93 (3), 595--623;
Jenks, G. F., Caspall, F. C., 1971. "Error on choroplethic maps: definition, measurement, reduction". Annals, Association of American Geographers, 61 (2), 217--244;
Dent, B. D., 1999, Cartography: thematic map design. McGraw-Hill, Boston, 417 pp.;
Slocum TA, McMaster RB, Kessler FC, Howard HH 2005 Thematic Cartography and Geographic Visualization, Prentice Hall, Upper Saddle River NJ.;
Fisher, W. D. 1958 "On grouping for maximum homogeneity", Journal of the American Statistical Association, 53, pp. 789--798 (http://lib.stat.cmu.edu/cmlib/src/cluster/fish.f)
findColours
, findCols
, pretty
, quantile
, kmeans
, hclust
, bclust
, findInterval
, colorRamp
, nclass
, shingle
# NOT RUN {
data(jenks71)
pal1 <- c("wheat1", "red3")
opar <- par(mfrow=c(2,3))
plot(classIntervals(jenks71$jenks71, n=5, style="fixed",
fixedBreaks=c(15.57, 25, 50, 75, 100, 155.30)), pal=pal1, main="Fixed")
plot(classIntervals(jenks71$jenks71, n=5, style="sd"), pal=pal1, main="Pretty standard deviations")
plot(classIntervals(jenks71$jenks71, n=5, style="equal"), pal=pal1, main="Equal intervals")
plot(classIntervals(jenks71$jenks71, n=5, style="quantile"), pal=pal1, main="Quantile")
set.seed(1)
plot(classIntervals(jenks71$jenks71, n=5, style="kmeans"), pal=pal1, main="K-means")
plot(classIntervals(jenks71$jenks71, n=5, style="hclust", method="complete"),
pal=pal1, main="Complete cluster")
plot(classIntervals(jenks71$jenks71, n=5, style="hclust", method="single"),
pal=pal1, main="Single cluster")
set.seed(1)
plot(classIntervals(jenks71$jenks71, n=5, style="bclust", verbose=FALSE),
pal=pal1, main="Bagged cluster")
plot(classIntervals(jenks71$jenks71, n=5, style="fisher"), pal=pal1, main="Fisher's method")
plot(classIntervals(jenks71$jenks71, n=5, style="jenks"), pal=pal1, main="Jenks' method")
par(opar)
classIntervals(jenks71$jenks71, n=5, style="fixed", fixedBreaks=c(15.57, 25, 50, 75, 100, 155.30))
classIntervals(jenks71$jenks71, n=5, style="sd")
classIntervals(jenks71$jenks71, n=5, style="equal")
classIntervals(jenks71$jenks71, n=5, style="quantile")
set.seed(1)
classIntervals(jenks71$jenks71, n=5, style="kmeans")
set.seed(1)
classIntervals(jenks71$jenks71, n=5, style="kmeans", intervalClosure="right")
set.seed(1)
classIntervals(jenks71$jenks71, n=5, style="kmeans", dataPrecision=0)
set.seed(1)
print(classIntervals(jenks71$jenks71, n=5, style="kmeans"), cutlabels=FALSE)
classIntervals(jenks71$jenks71, n=5, style="hclust", method="complete")
classIntervals(jenks71$jenks71, n=5, style="hclust", method="single")
set.seed(1)
classIntervals(jenks71$jenks71, n=5, style="bclust", verbose=FALSE)
classIntervals(jenks71$jenks71, n=5, style="bclust", hclust.method="complete", verbose=FALSE)
classIntervals(jenks71$jenks71, n=5, style="fisher")
classIntervals(jenks71$jenks71, n=5, style="jenks")
x <- c(0, 0, 0, 1, 2, 50)
classIntervals(x, n=3, style="fisher")
classIntervals(x, n=3, style="jenks")
# Argument 'unique' will collapse the label of classes containing a
# single value. This is particularly useful for 'censored' variables
# that contain for example many zeros.
data_censored<-c(rep(0,10), rnorm(100, mean=20,sd=1),rep(26,10))
plot(density(data_censored))
cl2<-classIntervals(data_censored, n=5, style="jenks", dataPrecision=2)
print(cl2, unique=FALSE)
print(cl2, unique=TRUE)
# }
Run the code above in your browser using DataLab