vcr.train <- vcr.da.train(iris[, 1:4], iris[, 5])
inds <- c(51:150) # a subset, containing only 2 classes
iris2 <- iris[inds, ] # fake "new" data
iris2[c(1:10, 51:60), 5] <- NA
vcr.test <- vcr.da.newdata(iris2[, 1:4], iris2[, 5], vcr.train)
vcr.test$PAC[1:25] # between 0 and 1. Is NA where the response is.
plot(vcr.test$PAC, vcr.train$PAC[inds]); abline(0, 1) # match
plot(vcr.test$farness, vcr.train$farness[inds]); abline(0, 1) # match
confmat.vcr(vcr.train) # for comparison
confmat.vcr(vcr.test)
stackedplot(vcr.train) # for comparison
stackedplot(vcr.test)
classmap(vcr.train, "versicolor", classCols = 2:4) # for comparison
classmap(vcr.test, "versicolor", classCols = 2:4) # has fewer points
# For more examples, we refer to the vignette:
if (FALSE) {
vignette("Discriminant_analysis_examples")
}
Run the code above in your browser using DataLab