Learn R Programming

clespr (version 1.1.2)

Composite Likelihood Estimation for Spatial Data

Description

Composite likelihood approach is implemented to estimating statistical models for spatial ordinal and proportional data based on Feng et al. (2014) . Parameter estimates are identified by maximizing composite log-likelihood functions using the limited memory BFGS optimization algorithm with bounding constraints, while standard errors are obtained by estimating the Godambe information matrix.

Copy Link

Version

Install

install.packages('clespr')

Monthly Downloads

178

Version

1.1.2

License

GPL-2

Maintainer

Ting Fung (Ralph) Ma

Last Published

February 23rd, 2018

Functions in clespr (1.1.2)

func.cl.ord

Composite Likelihood Calculation for Spatial Ordinal Data
func.cl.prop

Composite Likelihood Calculation for Spatial Proportional Data
func.cle.ord

Composite Likelihood Estimation for Spatial Ordinal Data
func.cle.prop

Composite Likelihood Estimation for Spatial Proportional Data
func.obs.ord

Latent Response Transformation for Spatial Ordinal Data
func.obs.prop

Latent Response Transformation for Proportional Data
func.cl.ord.repar

Reparameterized Composite Likelihood Calculation for Spatial Ordinal Data