#create climodr environment and allow terra-functions to use 70% of RAM
envrmt <- envi.create(proj_path = tempdir(),
memfrac = 0.7)
# Load the climodr example data into the current climodr environment
clim.sample(envrmt = envrmt)
#prepare csv-files
prep.csv(envrmt = envrmt,
method = "proc",
save_output = TRUE)
#process csv-files
csv_data <- proc.csv(envrmt = envrmt,
method = "monthly",
rbind = TRUE,
save_output = TRUE)
# Crop all raster bands
crop.all(envrmt = envrmt,
method = "MB_Timeseries",
overwrite = TRUE)
# Calculate Indices from cropped raster bands
calc.indices(envrmt = envrmt,
vi = "all",
bands = c("blue", "green", "red",
"nir", "nirb",
"re1", "re2", "re3",
"swir1", "swir2"),
overwrite = TRUE)
#extract station coordinates
csv_spat <- spat.csv(envrmt = envrmt,
method = "monthly",
des_file = "plot_description.csv",
save_output = TRUE)
#extract predictor values from raster files
csv_fin <- fin.csv(envrmt = envrmt,
method = "monthly",
save_output = TRUE)
head(csv_fin)
Run the code above in your browser using DataLab