if (FALSE) {
## this example changes the random number seed
doselev<-c(0,5,25,50,100,250)
n<-c(78,81,81,81,77,80)
dose<-rep(doselev,n)
### population parameters for simulation
e0<-2.465375
ed50<-67.481113
led50<-log(ed50)
lambda=1.8
dtarget<-100
diftarget<-9.032497
emax<-solveEmax(diftarget,dtarget,log(ed50),lambda,e0)
sdy<-7.967897
pop<-c(led50=led50,lambda=lambda,emax=emax,e0=e0)
meanresp<-emaxfun(dose,pop)
y<-rnorm(sum(n),meanresp,sdy)
nls.fit<-nls(y ~ e0 + (emax * dose^lambda)/(dose^lambda + exp(led50*lambda)),
start = pop, control = nls.control(
maxiter = 100),trace=TRUE,na.action=na.omit)
SeEmax(nls.fit,doselev=c(60,120),modType=4)
SeEmax(list(coef(nls.fit),vcov(nls.fit)),c(60,120),modType=4)
}
# \dontshow{
## this example changes the random number seed
doselev<-c(0,5,25,50,100,250)
n<-c(78,81,81,81,77,80)
dose<-rep(doselev,n)
### population parameters for simulation
e0<-2.465375
ed50<-67.481113
led50<-log(ed50)
dtarget<-100
diftarget<-9.032497
lambda=1.8
emax<-solveEmax(diftarget,dtarget,log(ed50),lambda,e0)
sdy<-7.967897
pop<-c(led50=led50,lambda=lambda,emax=emax,e0=e0)
meanresp<-emaxfun(dose,pop)
y<-rnorm(sum(n),meanresp,sdy)
nls.fit<-nls(y ~ e0 + (emax * dose^lambda)/(dose^lambda + exp(led50*lambda)),
start = pop, control = nls.control(
maxiter = 100),trace=TRUE,na.action=na.omit)
SeEmax(nls.fit,doselev=c(60,120),modType=4)
# }
Run the code above in your browser using DataLab