Learn R Programming

clinDR (version 2.4.1)

targetCI: Compute the dose with confidence interval exceeding a target change from placebo for each simulated example in an emaxsim object.

Description

Selects the lowest dose from a user-specified grid of doses with confidence interval exceeding a targetted change from placebo for each simulated data set in an emaxsim object.

Usage

targetCI (object,
	target,
	dgrid,
	clev=0.90,
	high= TRUE)

Value

Returns a vector with the lowest dose meeting the criteria. If a simulated example does not have a qualifying dose, Inf is returned.

Arguments

object

An emaxsim object

target

Target improvement from placebo

dgrid

The lowest dose is found by a search over a user-specified grid of doses. If dgrid is a single value, it is interpreted as the number of equally-spaced doses to select from zero to the highest dose in the simulated design.

clev

One-sided confidence interval level.

high

When TRUE, lower bounds are computed and must be higher than the target. When FALSE, upper bounds must be less than the target.

Author

Neal Thomas

See Also

emaxsim, predict.emaxsim, targetD

Examples

Run this code
	if (FALSE) {

		# emaxsim changes the random number seed
		nsim<-100
		doselev<-c(0,5,25,50,100)
		n<-c(78,81,81,81,77)

		### population parameters for simulation
		e0<-2.465375 
		ed50<-67.481113 
		
		dtarget<-100
		diftarget<-9.032497
		emax<-solveEmax(diftarget,dtarget,log(ed50),1,e0)

		sdy<-7.967897
		pop<-c(log(ed50),emax,e0)    
		meanlev<-emaxfun(doselev,pop)  

		###FixedMean is specialized constructor function for emaxsim
		gen.parm<-FixedMean(n,doselev,meanlev,sdy)  

		D1 <- emaxsim(nsim,gen.parm,modType=3)

		target<-6
		tD<- ( (target*ed50)/(emax-target) )
		selectedDose<-targetCI(D1,target,dgrid=c(1:100)+0.5,clev=0.80,high=TRUE)
	}
	# \dontshow{

		# emaxsim changes the random number seed
		nsim<-3
		doselev<-c(0,5,25,50,100)
		n<-c(78,81,81,81,77)

		### population parameters for simulation
		e0<-2.465375 
		ed50<-67.481113 
		
		dtarget<-100
		diftarget<-9.032497
		emax<-solveEmax(diftarget,dtarget,log(ed50),1,e0)

		sdy<-7.967897
		pop<-c(log(ed50),emax,e0)    
		meanlev<-emaxfun(doselev,pop)  

		###FixedMean is specialized constructor function for emaxsim
		gen.parm<-FixedMean(n,doselev,meanlev,sdy)  

		D1 <- emaxsim(nsim,gen.parm,modType=3,nproc=1)

		target<-6
		tD<- ( (target*ed50)/(emax-target) )
		selectedDose<-targetCI(D1,target,dgrid=c(1:100)+0.5,clev=0.80,high=TRUE)
	# }

Run the code above in your browser using DataLab