library(clinUtils)
data(dataADaMCDISCP01)
labelVars <- attr(dataADaMCDISCP01, "labelVars")
dataAE <- dataADaMCDISCP01$ADAE
dataDM <- dataADaMCDISCP01$ADSL
## example of basic sunburst:
# sunburst takes as input table with counts
if (requireNamespace("inTextSummaryTable", quietly = TRUE)) {
# total counts: Safety Analysis Set (patients with start date for the first treatment)
dataTotal <- subset(dataDM, RFSTDTC != "")
# compute adverse event table
tableAE <- inTextSummaryTable::getSummaryStatisticsTable(
data = dataAE,
rowVar = c("AESOC", "AEDECOD"),
dataTotal = dataTotal,
rowOrder = "total",
labelVars = labelVars,
stats = inTextSummaryTable::getStats("count"),
# plotly treemap requires records (rows) for each group
rowVarTotalInclude = "AEDECOD",
outputType = "data.frame-base"
)
dataSunburst <- tableAE
dataSunburst$n <- as.numeric(dataSunburst$n)
# create plot
sunburstClinData(
data = dataSunburst,
vars = c("AESOC", "AEDECOD"),
valueVar = "n",
valueLab = "Number of patients with adverse events"
)
## example where sum(counts) of child = counts of parent
# counts of patients per arm/site
tableDM <- inTextSummaryTable::getSummaryStatisticsTable(
data = dataDM,
rowVar = c("ARM", "SITEID"),
labelVars = labelVars,
# plotly treemap requires records (rows) for each group
rowVarTotalInclude = "SITEID",
rowTotalInclude = TRUE,
outputType = "data.frame-base"
)
tableDM$statN <- as.numeric(tableDM$statN)
# create the plot
sunburstClinData(
data = tableDM,
vars = c("ARM", "SITEID"),
valueVar = "statN", valueLab = "Counts of patients",
valueType = "total",
caption = "The sectors are colored by category.",
subtitle = "Group: treatment and site"
)
}
Run the code above in your browser using DataLab