# n can be extracted for every approach
cs_results_anchor <- claus_2020 |>
cs_anchor(
id,
time,
bdi,
pre = 1,
post = 4,
mid_improvement = 9
)
cs_results_distribution <- claus_2020 |>
cs_distribution(
id,
time,
bdi,
pre = 1,
post = 4,
reliability = 0.80
)
cs_results_statistical <- claus_2020 |>
cs_statistical(
id,
time,
bdi,
pre = 1,
post = 4,
m_functional = 8,
sd_functional = 8,
cutoff_type = "c"
)
cs_results_combined <- claus_2020 |>
cs_combined(
id,
time,
bdi,
pre = 1,
post = 4,
reliability = 0.80,
m_functional = 8,
sd_functional = 8,
cutoff_type = "c"
)
cs_results_percentage <- claus_2020 |>
cs_percentage(
id,
time,
bdi,
pre = 1,
post = 4,
pct_improvement = 0.3
)
cs_get_n(cs_results_anchor)
cs_get_n(cs_results_distribution)
cs_get_n(cs_results_statistical)
cs_get_n(cs_results_combined)
cs_get_n(cs_results_percentage)
# Get your desired n
cs_get_n(cs_results_anchor, which = "all")
cs_get_n(cs_results_anchor, which = "original")
cs_get_n(cs_results_anchor, which = "used")
Run the code above in your browser using DataLab