Learn R Programming

cliot (version 1.0.0)

basic_stats_calculator: Basic Statistics Calculator (Diagnostic Test Evaluation)

Description

Calculates standard diagnostic statistics from a 2x2 contingency table (True Positives, False Positives, False Negatives, True Negatives). Metrics include Sensitivity, Specificity, Positive/Negative Predictive Values (PPV/NPV), Likelihood Ratios (LR+/LR-), Accuracy, and Disease Prevalence.

Usage

basic_stats_calculator(tp, fp, fn, tn)

Value

A list containing:

Diagnostic_Accuracy

Sensitivity, Specificity, and Overall Accuracy.

Predictive_Values

PPV and NPV.

Likelihood_Ratios

LR+ (Sensitivity / (1-Specificity)) and LR- ((1-Sensitivity) / Specificity).

Population_Stats

Prevalence of disease in the sample and total sample size.

Arguments

tp

Numeric. Count of True Positives (Disease Present, Test Positive).

fp

Numeric. Count of False Positives (Disease Absent, Test Positive).

fn

Numeric. Count of False Negatives (Disease Present, Test Negative).

tn

Numeric. Count of True Negatives (Disease Absent, Test Negative).

References

Altman DG, Bland JM. Diagnostic tests 1: Sensitivity and specificity. BMJ. 1994;308(6943):1552. Altman DG, Bland JM. Diagnostic tests 2: Predictive values. BMJ. 1994;309(6947):102.

Examples

Run this code

# Example 1: Good Test
# TP=80, FP=10, FN=20, TN=90
basic_stats_calculator(80, 10, 20, 90)

# Example 2: Perfect Specificity
# TP=50, FP=0, FN=50, TN=100
# LR+ will be Inf
basic_stats_calculator(50, 0, 50, 100)

Run the code above in your browser using DataLab