Learn R Programming

cliot (version 1.0.0)

improve_vte_risk_score: IMPROVE Risk Score for Venous Thromboembolism (VTE)

Description

Calculates the IMPROVE VTE Risk Score to predict the 3-month risk of symptomatic VTE in acutely ill hospitalized medical patients. The score helps identify patients who may benefit from thromboprophylaxis.

Usage

improve_vte_risk_score(previous_vte, known_thrombophilia, lower_limb_paralysis,
                       current_cancer, immobilized_ge_7days, icu_ccu_stay,
                       age_gt_60)

Value

A list containing:

IMPROVE_VTE_Score

The calculated risk score (Range 0-12).

Est_3_Month_VTE_Risk

Estimated percentage risk of symptomatic VTE at 3 months.

Recommendation

Clinical guidance regarding prophylaxis.

Arguments

previous_vte

Numeric (0 or 1). History of previous VTE. (1 = Yes, +3 points).

known_thrombophilia

Numeric (0 or 1). Known thrombophilia (congenital or acquired). (1 = Yes, +2 points).

lower_limb_paralysis

Numeric (0 or 1). Current lower-limb paralysis or paresis. (1 = Yes, +2 points).

current_cancer

Numeric (0 or 1). Active cancer (excluding non-melanoma skin cancer). (1 = Yes, +2 points).

immobilized_ge_7days

Numeric (0 or 1). Immobilization for >= 7 days immediately prior to and during admission. (1 = Yes, +1 point).

icu_ccu_stay

Numeric (0 or 1). Stay in an Intensive Care Unit (ICU) or Coronary Care Unit (CCU). (1 = Yes, +1 point).

age_gt_60

Numeric (0 or 1). Age > 60 years. (1 = Yes, +1 point).

References

Spyropoulos AC, Anderson FA Jr, FitzGerald G, et al. Predictive and associative models to identify hospitalized medical patients at risk for VTE. Chest. 2011;140(3):706-714. doi:10.1378/chest.10-1944

Examples

Run this code

# Example 1: High Risk
# Prior VTE (+3), Cancer (+2), Age >60 (+1)
# Score = 6
improve_vte_risk_score(1, 0, 0, 1, 0, 0, 1)

# Example 2: Low Risk
# Age >60 only
# Score = 1
improve_vte_risk_score(0, 0, 0, 0, 0, 0, 1)

Run the code above in your browser using DataLab