Learn R Programming

cliot (version 1.0.0)

risk_malignancy_index: Risk of Malignancy Index (RMI) for Ovarian Cancer

Description

Calculates the Risk of Malignancy Index (RMI I) to stratify the risk of ovarian cancer in women with adnexal masses. The score combines serum CA-125 levels, ultrasound findings, and menopausal status. An RMI score greater than 200 suggests a higher risk of malignancy and typically warrants referral to a gynecological oncologist.

Usage

risk_malignancy_index(ca125_level, menopausal_status, multilocular_cyst,
                      solid_areas, bilateral_lesions, ascites,
                      intraabdominal_metastases)

Value

A list containing:

RMI_Score

The calculated Risk of Malignancy Index.

Risk_Category

Interpretation based on the threshold of 200 (High vs. Low).

Recommendation

Referral guidance.

Arguments

ca125_level

Numeric. Serum CA-125 level in U/mL.

menopausal_status

String. "pre" (1 point) or "post" (3 points). Post-menopausal is defined as >1 year of amenorrhea or age >50 in hysterectomized women.

multilocular_cyst

Numeric (0 or 1). Presence of a multilocular cystic lesion on ultrasound. (1 = Yes).

solid_areas

Numeric (0 or 1). Presence of solid areas within the mass on ultrasound. (1 = Yes).

bilateral_lesions

Numeric (0 or 1). Presence of bilateral lesions on ultrasound. (1 = Yes).

ascites

Numeric (0 or 1). Presence of ascites on ultrasound. (1 = Yes).

intraabdominal_metastases

Numeric (0 or 1). Presence of intra-abdominal metastases on ultrasound. (1 = Yes).

Details

The formula for RMI I is: $$RMI = U \times M \times CA125$$ Where:

  • U (Ultrasound Score): 0 if no features, 1 if 1 feature, 3 if 2-5 features.

  • M (Menopausal Status): 1 if Pre-menopausal, 3 if Post-menopausal.

  • CA125: Absolute value of serum CA-125.

References

Jacobs I, Oram D, Fairbanks J, et al. A risk of malignancy index incorporating CA 125, ultrasound and menopausal status for the accurate preoperative diagnosis of ovarian cancer. Br J Obstet Gynaecol. 1990;97(10):922-929. doi:10.1111/j.1471-0528.1990.tb02448.x

Examples

Run this code

# Example 1: High Risk
# CA125 100, Post-menopausal (3), 2 US features (Solid, Ascites -> U=3)
# RMI = 3 * 3 * 100 = 900
risk_malignancy_index(100, "post", 0, 1, 0, 1, 0)

# Example 2: Low Risk
# CA125 25, Pre-menopausal (1), 1 US feature (Multilocular -> U=1)
# RMI = 1 * 1 * 25 = 25
risk_malignancy_index(25, "pre", 1, 0, 0, 0, 0)

Run the code above in your browser using DataLab