data(iris)
dmat <- as.matrix(dist(iris[,1:4], method="euclidean"))
groups <- iris$Species
## visualize pairwise euclidean dstances among items in the Iris data set
fig <- scaleDistPlot(dmat, groups)
plot(fig)
## leave-one-out analysis of the classifier
loo <- lapply(seq_along(groups), function(i){
do.call(classify, pull(dmat, groups, i))
})
matches <- lapply(loo, function(x) rev(x)[[1]]$matches)
result <- sapply(matches, paste, collapse='-')
confusion <- sapply(matches, length) > 1
no_match <- sapply(matches, length) < 1
plot(scaleDistPlot(dmat, groups, fill=confusion, O=confusion, X=no_match))
Run the code above in your browser using DataLab