# NOT RUN {
## gnerating data, a sample of size 20
set.seed(11)
doses2Use <- c(0, 5, 20)
numRep2Use <- c(3, 3, 3)
generatedData <- cbind(rep(1,sum(numRep2Use)),
MCPMod::genDFdata("logistic",c(5, 3, 10, 0.05),
doses2Use, numRep2Use, 1),
matrix(rnorm(1*sum(numRep2Use)), sum(numRep2Use), 1))
colnames(generatedData) <- c("ID", "dose", "response", "x1")
for (iGen in 2:20){
genData0 <- cbind(rep(iGen,sum(numRep2Use)),
MCPMod::genDFdata("logistic",c(5, 3, 10, 0.05),
doses2Use, numRep2Use, 1),
matrix(rnorm(1*sum(numRep2Use)), sum(numRep2Use), 1))
colnames(genData0) <- c("ID", "dose", "response", "x1")
generatedData <- rbind(generatedData, genData0)
}
## transforming it for clustering
toInput <- inputDataMaker(2, 3, 1, generatedData)
## monotone pattern clustering
monotonePatternClust <- monotonePatternClustering (inputData =
toInput$inputData, colsData = toInput$colsData ,
colID = toInput$colID, doseLevels = toInput$doseLevels,
numReplications = toInput$numReplicates,
BHorBY = TRUE, SAM = FALSE, testType = c("E2"),
adjustType = "BH", FDRvalue = c(0.05, 0.05),
nPermute= c(100, 100), fudgeSAM = "pooled",
useSeed = c(NULL, NULL), theLeastNumberOfTests = 1,
na.rm = FALSE, imputationMethod = "mean")
# }
Run the code above in your browser using DataLab