Learn R Programming

clustMD (version 1.0)

E.step: E-step of the (MC)EM algorithm.

Description

Internal function.

Usage

E.step(N, G, pi.vec, Y, OrdIndx, CnsIndx, D, perc.cut, mu, Sigma, Ez, J, probs.nom, K)

Arguments

N
Number of observations.
G
Number of mixture components.
pi.vec
Mixing weights.
Y
An N x J data matrix.
OrdIndx
The number of continuous and ordinal (including binary) variables.
CnsIndx
The number of continuous variables.
D
Dimension of the latent data.
perc.cut
Threshold parameters.
mu
A D x G matrix of means.
Sigma
A D x D x G array of covariance parameters.
Ez
A N x D x G array of latent expected values.
J
The number of observed variables.
probs.nom
Probabilities of nominal responses by group.
K
The number of levels for each variable.

Value

  • Output required for clustMD function.

Details

E-step: an internal function.

References

McParland, D. and Gormley, I.C. (2014). Model based clustering for mixed data: clustMD. Technical report, University College Dublin.

See Also

clustMD