Learn R Programming

cluster (version 1.12.0)

ellipsoidhull: Compute the Ellipsoid Hull or Spanning Ellipsoid of a Point Set

Description

Compute the ellipsoid hull or spanning ellipsoid, i.e. the ellipsoid of minimal volume (area in 2D) such that all given points lie just inside or on the boundary of the ellipsoid.

Usage

ellipsoidhull(x, tol=0.01, maxit=5000,
              ret.wt = FALSE, ret.sqdist = FALSE, ret.pr = FALSE)
## S3 method for class 'ellipsoid':
print(x, digits = max(1, getOption("digits") - 2), ...)

Arguments

x
the $n$ $p$-dimensional points asnumeric $n\times p$ matrix.
tol
convergence tolerance for Titterington's algorithm. Setting this to much smaller values may drastically increase the number of iterations needed, and you may want to increas maxit as well.
maxit
integer giving the maximal number of iteration steps for the algorithm.
ret.wt, ret.sqdist, ret.pr
logicals indicating if additional information should be returned, ret.wt specifying the weights, ret.sqdist the squared distances and ret.pr the final probabilitie
digits,...
the usual arguments to print methods.

Value

  • an object of class "ellipsoid", basically a list with several components, comprising at least
  • cov$p\times p$ covariance matrix description the ellipsoid.
  • loc$p$-dimensional location of the ellipsoid center.
  • d2average squared radius. Further, $d2 = t^2$, where $t$ is the value of a t-statistic on the ellipse boundary (from ellipse in the ellipse package), and hence, more usefully, d2 = qchisq(alpha, df = p), where alpha is the confidence level for p-variate normally distributed data with location and covariance loc and cov to lie inside the ellipsoid.
  • wtthe vector of weights iff ret.wt was true.
  • sqdistthe vector of squared distances iff ret.sqdist was true.
  • probthe vector of algorithm probabilities iff ret.pr was true.
  • itnumber of iterations used.
  • tol, maxitjust the input argument, see above.
  • epsthe achieved tolerance which is the maximal squared radius minus $p$.
  • ierrerror code as from the algorithm; 0 means ok.
  • convlogical indicating if the converged. This is defined as it < maxit && ierr == 0.

Details

The spanning ellipsoid algorithm is said to stem from Titterington(1976), in Pison et al(1999) who use it for clusplot.default. The problem can be seen as a special case of the Min.Vol. ellipsoid of which a more more flexible and general implementation is cov.mve in the MASS package.

References

Pison, G., Struyf, A. and Rousseeuw, P.J. (1999) Displaying a Clustering with CLUSPLOT, Computational Statistics and Data Analysis, 30, 381--392. A version of this is available as technical report from http://www.agoras.ua.ac.be/abstract/Disclu99.htm

D.M. Titterington (1976) Algorithms for computing D-optimal design on finite design spaces. In Proc. of the 1976 Conf. on Information Science and Systems, 213--216; John Hopkins University.

See Also

predict.ellipsoid which is also the predict method for ellipsoid objects. volume.ellipsoid for an example of manual ellipsoid object construction; further ellipse from package ellipse and ellipsePoints from package sfsmisc.

chull for the convex hull, clusplot which makes use of this; cov.mve.

Examples

Run this code
x <- rnorm(100)
xy <- unname(cbind(x, rnorm(100) + 2*x + 10))
exy <- ellipsoidhull(xy)
exy # >> calling print.ellipsoid()

plot(xy)
lines(predict(exy))
points(rbind(exy$loc), col = "red", cex = 3, pch = 13)

exy <- ellipsoidhull(xy, tol = 1e-7, ret.wt = TRUE, ret.sq = TRUE)
str(exy) # had small `tol', hence many iterations
(ii <- which(zapsmall(exy $ wt) > 1e-6)) # only about 4 to 6 points
round(exy$wt[ii],3); sum(exy$wt[ii]) # sum to 1

Run the code above in your browser using DataLab