# silhouette

0th

Percentile

##### Compute or Extract Silhouette Information from Clustering

Compute silhouette information according to a given clustering in $k$ clusters.

Keywords
cluster
##### Usage
silhouette(x, ...)
## S3 method for class 'default':
silhouette(x, dist, dmatrix, \dots)
## S3 method for class 'partition':
silhouette(x, \dots)
## S3 method for class 'clara':
silhouette(x, full = FALSE, \dots)sortSilhouette(object, ...)
## S3 method for class 'silhouette':
summary(object, FUN = mean, \dots)
## S3 method for class 'silhouette':
plot(x, nmax.lab = 40, max.strlen = 5,
main = NULL, sub = NULL, xlab = expression("Silhouette width "* s[i]),
col = "gray",  do.col.sort = length(col) > 1, border = 0,
cex.names = par("cex.axis"), do.n.k = TRUE, do.clus.stat = TRUE, ...)
x
an object of appropriate class; for the default method an integer vector with $k$ different integer cluster codes or a list with such an x$clustering component. Note that silhouette statistics are only defined if dist a dissimilarity object inheriting from class dist or coercible to one. If not specified, dmatrix must be. dmatrix a symmetric dissimilarity matrix ($n \times n$), specified instead of dist, which can be more efficient. full logical specifying if a full silhouette should be computed for clara object. Note that this requires$O(n^2)$memory, since the full dissimilarity (see object an object of class silhouette. ... further arguments passed to and from methods. FUN function used to summarize silhouette widths. nmax.lab integer indicating the number of labels which is considered too large for single-name labeling the silhouette plot. max.strlen positive integer giving the length to which strings are truncated in silhouette plot labeling. main, sub, xlab arguments to title; have a sensible non-NULL default here. col, border, cex.names arguments passed barplot(); note that the default used to be col = heat.colors(n), border = par("fg") instead. col can also be a color vector of length$k$for cluste do.col.sort logical indicating if the colors col should be sorted along the silhouette; this is useful for casewise or clusterwise coloring. do.n.k logical indicating if$n$and$k$title text should be written. do.clus.stat logical indicating if cluster size and averages should be written right to the silhouettes. ##### Details For each observation i, the silhouette width$s(i)$is defined as follows: Put a(i) = average dissimilarity between i and all other points of the cluster to which i belongs (if i is the only observation in its cluster,$s(i) := 0$without further calculations). For all other clusters C, put$d(i,C)$= average dissimilarity of i to all observations of C. The smallest of these$d(i,C)$is$b(i) := \min_C d(i,C)$, and can be seen as the dissimilarity between i and its neighbor cluster, i.e., the nearest one to which it does not belong. Finally, $$s(i) := \frac{b(i) - a(i) }{max(a(i), b(i))}.$$ silhouette.default() is now based on C code donated by Romain Francois (the R version being still available as cluster:::silhouette.default.R). Observations with a large$s(i)$(almost 1) are very well clustered, a small$s(i)$(around 0) means that the observation lies between two clusters, and observations with a negative$s(i)$are probably placed in the wrong cluster. ##### Value • silhouette() returns an object, sil, of class silhouette which is an [n x 3] matrix with attributes. For each observation i, sil[i,] contains the cluster to which i belongs as well as the neighbor cluster of i (the cluster, not containing i, for which the average dissimilarity between its observations and i is minimal), and the silhouette width$s(i)$of the observation. The colnames correspondingly are c("cluster", "neighbor", "sil_width"). summary(sil) returns an object of class summary.silhouette, a list with components • si.summarynumerical summary of the individual silhouette widths$s(i)$. • clus.avg.widthsnumeric (rank 1) array of clusterwise means of silhouette widths where mean = FUN is used. • avg.widththe total mean FUN(s) where s are the individual silhouette widths. • clus.sizestable of the$k$cluster sizes. • callif available, the call creating sil. • Orderedlogical identical to attr(sil, "Ordered"), see below. • sortSilhouette(sil) orders the rows of sil as in the silhouette plot, by cluster (increasingly) and decreasing silhouette width$s(i)$. attr(sil, "Ordered") is a logical indicating if sil is ordered as by sortSilhouette(). In that case, rownames(sil) will contain case labels or numbers, and attr(sil, "iOrd") the ordering index vector. ##### Note While silhouette() is intrinsic to the partition clusterings, and hence has a (trivial) method for these, it is straightforward to get silhouettes from hierarchical clusterings from silhouette.default() with cutree() and distance as input. By default, for clara() partitions, the silhouette is just for the best random subset used. Use full = TRUE to compute (and later possibly plot) the full silhouette. ##### References Rousseeuw, P.J. (1987) Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math., 20, 53--65. chapter 2 of Kaufman, L. and Rousseeuw, P.J. (1990), see the references in plot.agnes. ##### See Also partition.object, plot.partition. ##### Aliases • silhouette • silhouette.clara • silhouette.default • silhouette.partition • sortSilhouette • summary.silhouette • print.summary.silhouette • plot.silhouette ##### Examples data(ruspini) pr4 <- pam(ruspini, 4) str(si <- silhouette(pr4)) (ssi <- summary(si)) plot(si) # silhouette plot plot(si, col = c("red", "green", "blue", "purple"))# with cluster-wise coloring si2 <- silhouette(pr4$clustering, dist(ruspini, "canberra"))
summary(si2) # has small values: "canberra"'s fault
plot(si2, nmax= 80, cex.names=0.6)

op <- par(mfrow= c(3,2), oma= c(0,0, 3, 0),
mgp= c(1.6,.8,0), mar= .1+c(4,2,2,2))
for(k in 2:6)
plot(silhouette(pam(ruspini, k=k)), main = paste("k = ",k), do.n.k=FALSE)
mtext("PAM(Ruspini) as in Kaufman & Rousseeuw, p.101",
outer = TRUE, font = par("font.main"), cex = par("cex.main")); frame()

## the same with cluster-wise colours:
c6 <- c("tomato", "forest green", "dark blue", "purple2", "goldenrod4", "gray20")
for(k in 2:6)
plot(silhouette(pam(ruspini, k=k)), main = paste("k = ",k), do.n.k=FALSE,
col = c6[1:k])
par(op)

## clara(): standard silhouette is just for the best random subset
data(xclara)
set.seed(7)
str(xc1k <- xclara[sample(nrow(xclara), size = 1000) ,])
cl3 <- clara(xc1k, 3)
plot(silhouette(cl3))# only of the "best" subset of 46
## The full silhouette: internally needs large (36 MB) dist object:
sf <- silhouette(cl3, full = TRUE) ## this is the same as
s.full <- silhouette(cl3$clustering, daisy(xc1k)) if(paste(R.version$major, R.version$minor, sep=".") >= "2.3.0") stopifnot(all.equal(sf, s.full, check.attributes = FALSE, tol = 0)) ## color dependent on original "3 groups of each 1000": plot(sf, col = 2+ as.integer(names(cl3$clustering) ) %/% 1000,
main ="plot(silhouette(clara(.), full = TRUE))")

## Silhouette for a hierarchical clustering:
ar <- agnes(ruspini)
si3 <- silhouette(cutree(ar, k = 5), # k = 4 gave the same as pam() above
daisy(ruspini))
plot(si3, nmax = 80, cex.names = 0.5)
## 2 groups: Agnes() wasn't too good:
si4 <- silhouette(cutree(ar, k = 2), daisy(ruspini))
plot(si4, nmax = 80, cex.names = 0.5)
Documentation reproduced from package cluster, version 1.14.4, License: GPL (>= 2)

### Community examples

Looks like there are no examples yet.