Learn R Programming

cluster (version 2.0.3)

clusGap: Gap Statistic for Estimating the Number of Clusters

Description

clusGap() calculates a goodness of clustering measure, the gap statistic. For each number of clusters $k$, it compares $\log(W(k))$ with $E^*[\log(W(k))]$ where the latter is defined via bootstrapping, i.e. simulating from a reference distribution.

maxSE(f, SE.f) determines the location of the maximum of f, taking a 1-SE rule into account for the *SE* methods. The default method "firstSEmax" looks for the smallest $k$ such that its value $f(k)$ is not more than 1 standard error away from the first local maximum. This is similar but not the same as "Tibs2001SEmax", Tibshirani et al's recommendation of determining the number of clusters from the gap statistics and their standard deviations.

Usage

clusGap(x, FUNcluster, K.max, B = 100, verbose = interactive(), ...)

maxSE(f, SE.f, method = c("firstSEmax", "Tibs2001SEmax", "globalSEmax", "firstmax", "globalmax"), SE.factor = 1) ## S3 method for class 'clusGap': print(x, method = "firstSEmax", SE.factor = 1, \dots)

Arguments

x
numeric matrix or data.frame.
FUNcluster
a function which accepts as first argument a (data) matrix like x, second argument, say $k, k\geq 2$, the number of clusters desired, and returns a
K.max
the maximum number of clusters to consider, must be at least two.
B
integer, number of Monte Carlo (bootstrap) samples.
verbose
integer or logical, determining if progress output should be printed. The default prints one bit per bootstrap sample.
...
optionally further arguments for FUNcluster(), see kmeans example below.
f
numeric vector of function values, of length $K$, whose (1 SE respected) maximum we want.
SE.f
numeric vector of length $K$ of standard errors of f.
method
character string indicating how the optimal number of clusters, $\hat k$, is computed from the gap statistics (and their standard deviations), or more generally how the location $\hat k$ of the maximum of $f_k$ should be d
SE.factor
[When method contains "SE"] Determining the optimal number of clusters, Tibshirani et al. proposed the 1 S.E.-rule. Using an SE.factor $f$, the f S.E.-rule is used, more

Value

  • an object of S3 class "clusGap", basically a list with components
  • Taba matrix with K.max rows and 4 columns, named "logW", "E.logW", "gap", and "SE.sim", where gap = E.logW - logW, and SE.sim corresponds to the standard error of gap, SE.sim[k]=$s_k$, where $s_k := \sqrt{1 + 1/B} sd^*(gap_j)$, and $sd^*()$ is the standard deviation of the simulated (bootstrapped) gap values.
  • nnumber of observations, i.e., nrow(x).
  • Binput B
  • FUNclusterinput function FUNcluster

Details

The main result $Tab[,"gap"] of course is from bootstrapping aka Monte Carlo simulation and hence random, or equivalently, depending on the initial random seed (see set.seed()). On the other hand, in our experience, using B = 500 gives quite precise results such that the gap plot is basically unchanged after an another run.

References

Tibshirani, R., Walther, G. and Hastie, T. (2001). Estimating the number of data clusters via the Gap statistic. Journal of the Royal Statistical Society B, 63, 411--423.

Tibshirani, R., Walther, G. and Hastie, T. (2000). Estimating the number of clusters in a dataset via the Gap statistic. Technical Report. Stanford.

Per Broberg (2006). SAGx: Statistical Analysis of the GeneChip. R package version 1.9.7. http://home.swipnet.se/pibroberg/expression_hemsida1.html

See Also

silhouette for a much simpler less sophisticated goodness of clustering measure.

cluster.stats() in package fpc for alternative measures.

Examples

Run this code
### --- maxSE() methods -------------------------------------------
(mets <- eval(formals(maxSE)$method))
fk <- c(2,3,5,4,7,8,5,4)
sk <- c(1,1,2,1,1,3,1,1)/2
## use plot.clusGap():
plot(structure(class="clusGap", list(Tab = cbind(gap=fk, SE.sim=sk))))
## Note that 'firstmax' and 'globalmax' are always at 3 and 6 :
sapply(c(1/4, 1,2,4), function(SEf)
        sapply(mets, function(M) maxSE(fk, sk, method = M, SE.factor = SEf)))

### --- clusGap() -------------------------------------------------
## ridiculously nicely separated clusters in 3 D :
x <- rbind(matrix(rnorm(150,           sd = 0.1), ncol = 3),
           matrix(rnorm(150, mean = 1, sd = 0.1), ncol = 3),
           matrix(rnorm(150, mean = 2, sd = 0.1), ncol = 3),
           matrix(rnorm(150, mean = 3, sd = 0.1), ncol = 3))

## Slightly faster way to use pam (see below)
pam1 <- function(x,k) list(cluster = pam(x,k, cluster.only=TRUE))

doExtras <- cluster:::doExtras()
## or set it explicitly to TRUE for the following
if(doExtras) {
## Note we use  B = 60 in the following examples to keep them "speedy".
## ---- rather keep the default B = 500 for your analysis!

## note we can  pass 'nstart = 20' to kmeans() :
gskmn <- clusGap(x, FUN = kmeans, nstart = 20, K.max = 8, B = 60)
gskmn #-> its print() method
plot(gskmn, main = "clusGap(., FUN = kmeans, n.start=20, B= 60)")
set.seed(12); system.time(
  gsPam0 <- clusGap(x, FUN = pam, K.max = 8, B = 60)
)
set.seed(12); system.time(
  gsPam1 <- clusGap(x, FUN = pam1, K.max = 8, B = 60)
)
## and show that it gives the same:
stopifnot(identical(gsPam1[-4], gsPam0[-4]))
gsPam1
print(gsPam1, method="globalSEmax")
print(gsPam1, method="globalmax")
}
gs.pam.RU <- clusGap(ruspini, FUN = pam1, K.max = 8, B = 60)
gs.pam.RU
plot(gs.pam.RU, main = "Gap statistic for the 'ruspini' data")
mtext("k = 4 is best .. and  k = 5  pretty close")

## This takes a minute..
## No clustering ==> k = 1 ("one cluster") should be optimal:
Z <- matrix(rnorm(256*3), 256,3)
gsP.Z <- clusGap(Z, FUN = pam1, K.max = 8, B = 200)
plot(gsP.Z)
gsP.Z

Run the code above in your browser using DataLab