Learn R Programming

cluster (version 2.1.8.2)

predict.ellipsoid: Predict Method for Ellipsoid Objects

Description

Compute points on the ellipsoid boundary, mostly for drawing.

Usage


predict.ellipsoid(object, n.out=201, ...)
# S3 method for ellipsoid
predict(object, n.out=201, ...)
ellipsoidPoints(A, d2, loc, n.half = 201)

Arguments

Value

a numeric matrix of dimension 2*n.out times \(p\).

Details

Note ellipsoidPoints is the workhorse function of predict.ellipsoid a standalone function and method for ellipsoid objects, see ellipsoidhull. The class of object is not checked; it must solely have valid components loc (length \(p\)), the \(p \times p\) matrix cov (corresponding to A) and d2 for the center, the shape (“covariance”) matrix and the squared average radius (or distance) or qchisq(*, p) quantile.

Unfortunately, this is only implemented for \(p = 2\), currently; contributions for \(p \ge 3\) are very welcome.

See Also

ellipsoidhull, volume.ellipsoid.

Examples

Run this code
 ## see also  example(ellipsoidhull)

## Robust vs. L.S. covariance matrix
set.seed(143)
x <- rt(200, df=3)
y <- 3*x + rt(200, df=2)
plot(x,y, main="non-normal data (N=200)")
mtext("with classical and robust cov.matrix ellipsoids")
X <- cbind(x,y)
C.ls <- cov(X) ; m.ls <- colMeans(X)
d2.99 <- qchisq(0.99, df = 2)
lines(ellipsoidPoints(C.ls, d2.99, loc=m.ls), col="green")
if(require(MASS)) {
  Cxy <- cov.rob(cbind(x,y))
  lines(ellipsoidPoints(Cxy$cov, d2 = d2.99, loc=Cxy$center), col="red")
}# MASS

Run the code above in your browser using DataLab