Learn R Programming

clusterSEs (version 1.0)

cluster.bs: Pairs Cluster Bootstrapped p-Values For GLM

Description

This software estimates p-values using pairs cluster bootstrapped t-statistics for GLM models (Cameron, Gelbach, and Miller 2008). The data set is repeatedly re-sampled by cluster, a model is estimated, and inference is based on the sampling distribution of the pivotal (t) statistic.

Usage

cluster.bs(mod, dat, cluster, boot.reps = 1000, stratify = FALSE,
  cluster.se = TRUE, report = TRUE, prog.bar = TRUE)

Arguments

mod
A model estimated using glm.
dat
The data set used to estimate mod.
cluster
A formula of the clustering variable.
boot.reps
The number of bootstrap samples to draw.
stratify
Sample clusters only (= FALSE) or clusters and observations by cluster (= TRUE).
cluster.se
Use clustered standard errors (= TRUE) or ordinary SEs (= FALSE) for bootstrap replicates.
report
Should a table of results be printed to the console?
prog.bar
Show a progress bar of the bootstrap (= TRUE) or not (= FALSE).

Value

  • A list with the elements
  • p.valuesA matrix of the estimated p-values.

References

Cameron, A. Colin, Jonah B. Gelbach, and Douglas L. Miller. 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors." The Review of Economics and Statistics 90(3): 414-427.

Examples

Run this code
# predict whether respondent has a university degree
require(effects)
data(WVS)
logit.model <- glm(degree ~ religion + gender + age, data=WVS, family=binomial(link="logit"))
summary(logit.model)

# compute pairs cluster bootstrapped p-values
clust.bs.p <- cluster.bs(logit.model, WVS, ~ country, report = T)

Run the code above in your browser using DataLab