# predict method of hospital admission
require(VGAMdata)
data(vtinpat)
vtinpat$hos.num <- as.numeric(vtinpat$hospital)
vtinpat$age <- as.numeric(vtinpat$age.group)
vtinpat.mlogit <- mlogit.data(vtinpat, choice = "admit", shape="wide")
vt.mod <- mlogit(admit ~ 0 | age + sex, data = vtinpat.mlogit)
summary(vt.mod)
# compute cluster-adjusted p-values (takes a while)
clust.p <- cluster.im.mlogit(vt.mod, dat=vtinpat.mlogit, cluster = ~ hos.num,
report=TRUE, se=TRUE, truncate=TRUE)
# compute 95% confidence intervals
ci.lo <- coefficients(vt.mod) - qt(0.975, df=13)*clust.p$se
ci.hi <- coefficients(vt.mod) + qt(0.975, df=13)*clust.p$se
ci <- cbind(ci.lo, ci.hi)
colnames(ci) <- c("95% lower bound", "95% upper bound")
ciRun the code above in your browser using DataLab