# example one: predict whether respondent has a university degree
require(effects)
data(WVS)
logit.model <- glm(degree ~ religion + gender + age, data=WVS, family=binomial(link="logit"))
summary(logit.model)
# compute pairs cluster bootstrapped p-values
clust.bs.p <- cluster.bs.glm(logit.model, WVS, ~ country, report = T)
# example two: predict chicken weight
rm(list=ls())
data(ChickWeight)
dum <- model.matrix(~ ChickWeight$Diet)
ChickWeight$Diet2 <- as.numeric(dum[,2])
ChickWeight$Diet3 <- as.numeric(dum[,3])
ChickWeight$Diet4 <- as.numeric(dum[,4])
weight.mod2 <- glm(formula = weight~Diet2+Diet3+Diet4+log(Time+1),data=ChickWeight)
# compute pairs cluster bootstrapped p-values
clust.bs.w <- cluster.bs.glm(weight.mod2, ChickWeight, ~ Chick, report = T)Run the code above in your browser using DataLab