Learn R Programming

clusterWebApp (version 0.1.3)

run_clustering: Perform clustering analysis

Description

This function performs clustering on a numeric matrix using one of six common clustering methods: KMeans, Hierarchical, DBSCAN, PAM, Gaussian Mixture Model (GMM), or Spectral Clustering.

Usage

run_clustering(data, method, k = 3, eps = 0.5, minPts = 5)

Value

A list containing two elements:

cluster

A vector of cluster labels assigned to each observation.

silhouette

An object of class silhouette representing silhouette widths.

Arguments

data

A numeric matrix or data frame, typically standardized, to be clustered.

method

A string indicating the clustering method to use. Options are: "KMeans", "Hierarchical", "DBSCAN", "PAM", "GMM", "Spectral".

k

An integer specifying the number of clusters. Required for KMeans, Hierarchical, PAM, GMM, and Spectral.

eps

A numeric value specifying the epsilon parameter for DBSCAN. Default is 0.5.

minPts

An integer specifying the minimum number of points for DBSCAN. Default is 5.

Examples

Run this code
data(iris)
result <- run_clustering(scale(iris[, 1:4]), method = "KMeans", k = 3)
print(result$cluster)
if (interactive()) {
  plot(result$silhouette)
}

Run the code above in your browser using DataLab