This function takes a dataset, a factor, a p_value method, number of bootstraps and permutation when necessary, and returns a p_values matrix between each pair of species and a plot if the user select TRUE using Euclidean distance for the distances calculation.
pvaluesceucl(
dataset,
formula,
pvalue.method = "chisq",
num.permutations = 100,
num.bootstraps = 10,
plot = TRUE
)
A list containing the p_values matrix and, optionally, the plot. #' @examples # Calculate p_values of "Species" variable in iris dataset pvaluesceucl(iris,~Species, pvalue.method = "chisq", num.permutations = 100, num.bootstraps = 10) # Calculate p_values of "am" variable in mtcars dataset pvaluesceucl(mtcars,~am, pvalue.method = "chisq", num.permutations = 100, num.bootstraps = 10)
A dataframe.
A factor which you want to calculate the Euclidean distances.
A p_value method used to calculate the matrix, the default value is "chisq". Other methods are "permutation" and "bootstrap".
Number of permutation to specify if you select "permutation" in "pvalue.method". The default value is 100.
Number of bootstrap to specify if you select "bootstrap" in "p_value method". The default value is 10.
if TRUE, plot the p_values heatmap. The default value is TRUE.