Learn R Programming

cmgnd (version 0.1.1)

dgnd: The Generalized Normal Distribution (GND)

Description

Density function for the GND with location parameter mu, scale parameter sigma and shape parameter nu.

Usage

dgnd(x, mu = 0, sigma = 1, nu = 2)

Value

dgnd returns the density.

Arguments

x

A numeric vector of observations.

mu

A numeric value indicating the location parameter \(\mu\).

sigma

A numeric value indicating the scale parameter \(\sigma\).

nu

A numeric value indicating the shape parameter \(\nu\).

Details

If mu, sigma and nu are not specified they assume the default values of 0, 1 and 2, respectively. The GND distribution has density $$ f_{GND}(x|\mu,\sigma,\nu)=\frac{\nu}{2\sigma\Gamma(1\mathbin{/}\nu)}\exp\Biggr\{-\Biggr|\frac{x-\mu}{\sigma}\Biggr|^\nu\Biggr\}.$$ The shape parameter \(\nu\) controls both the peakedness and tail weights. If \(\nu=1\) the GND reduces to the Laplace distribution and if \(\nu=2\) it coincides with the normal distribution. It is noticed that \(1<\nu<2\) yields an intermediate distribution between the normal and the Laplace distribution. As limit cases, for \(\nu\rightarrow\infty\) the distribution tends to a uniform distribution, while for \(\nu\rightarrow0\) it will be impulsive.

References

Nadarajah, S. (2005). A generalized normal distribution. Journal of Applied Statistics, \(32(7):685–694\).