powered by
Solve least squares with graident descent
gdls(A, b, alpha = 0.05, tol = 1e-06, m = 1e+05)
a square matrix representing the coefficients of a linear system
a vector representing the right-hand side of the linear system
the learning rate
the expected error tolerance
the maximum number of iterations
the modified matrix
gdls solves a linear system using gradient descent.
gdls
Other linear: choleskymatrix(), detmatrix(), invmatrix(), iterativematrix, lumatrix(), refmatrix(), rowops, tridiagmatrix(), vecnorm()
choleskymatrix()
detmatrix()
invmatrix()
iterativematrix
lumatrix()
refmatrix()
rowops
tridiagmatrix()
vecnorm()
# NOT RUN { head(b <- iris$Sepal.Length) head(A <- matrix(cbind(1, iris$Sepal.Width, iris$Petal.Length, iris$Petal.Width), ncol = 4)) gdls(A, b, alpha = 0.05, m = 10000) # }
Run the code above in your browser using DataLab