
Last chance! 50% off unlimited learning
Sale ends in
The function determines correlations over time from data of two CM SAF NetCDF input files. This function is applicable to 3-dimensional NetCDF data.
timcor(
var1,
infile1,
var2,
infile2,
outfile,
nc34 = 4,
overwrite = FALSE,
verbose = FALSE,
nc1 = NULL,
nc2 = NULL
)
A NetCDF file including a time series of correlations over time is written.
Name of NetCDF variable of the first data set (character).
Filename of first input NetCDF file. This may include the directory (character).
Name of NetCDF variable of the second data set (character).
Filename of second input NetCDF file. This may include the directory (character).
Filename of output NetCDF file. This may include the directory (character).
NetCDF version of output file. If nc34 = 3
the output file will be
in NetCDFv3 format (numeric). Default output is NetCDFv4.
logical; should existing output file be overwritten?
logical; if TRUE, progress messages are shown
Alternatively to infile1
you can specify the input as an
object of class ncdf4
(as returned from ncdf4::nc_open
).
Alternatively to infile2
you can specify the input as an
object of class ncdf4
(as returned from ncdf4::nc_open
).
Other correlation and covariance:
fldcor()
,
fldcovar()
,
timcovar()
## Create two example NetCDF files with a similar structure as used by CM
## SAF. The files are created with the ncdf4 package. Alternatively
## example data can be freely downloaded here:
library(ncdf4)
## create some (non-realistic) example data
lon <- seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- as.Date("2000-05-31")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))
data1 <- array(250:350, dim = c(21, 21, 1))
data2 <- array(230:320, dim = c(21, 21, 1))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -999, prec = "float")
vars <- list(var1)
ncnew_1 <- nc_create(file.path(tempdir(), "CMSAF_example_file_1.nc"), vars)
ncnew_2 <- nc_create(file.path(tempdir(), "CMSAF_example_file_2.nc"), vars)
ncvar_put(ncnew_1, var1, data1)
ncvar_put(ncnew_2, var1, data2)
ncatt_put(ncnew_1, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew_1, "lat", "standard_name", "latitude", prec = "text")
ncatt_put(ncnew_2, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew_2, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew_1)
nc_close(ncnew_2)
## Determine the correlations over time of the example CM SAF NetCDF files and
## write the output to a new file.
timcor(var1 = "SIS", infile1 = file.path(tempdir(),"CMSAF_example_file_1.nc"),
var2 = "SIS", infile2 = file.path(tempdir(), "CMSAF_example_file_2.nc"),
outfile = file.path(tempdir(),"CMSAF_example_file_timcor.nc"))
unlink(c(file.path(tempdir(),"CMSAF_example_file_1.nc"),
file.path(tempdir(),"CMSAF_example_file_2.nc"),
file.path(tempdir(),"CMSAF_example_file_timcor.nc")))
Run the code above in your browser using DataLab