data("lalonde", package = "cobalt")
lalonde$p.score <- glm(treat ~ age + educ + race, data = lalonde,
family = "binomial")$fitted.values
covariates <- subset(lalonde, select = c(age, educ, race))
## Propensity score weighting using IPTW
lalonde$iptw.weights <- ifelse(lalonde$treat==1,
1/lalonde$p.score,
1/(1-lalonde$p.score))
# data frame interface:
bal.tab(covariates, treat = "treat", data = lalonde,
weights = "iptw.weights", s.d.denom = "pooled")
# Formula interface:
bal.tab(treat ~ age + educ + race, data = lalonde,
weights = "iptw.weights", s.d.denom = "pooled")
## Propensity score subclassification
lalonde$subclass <- findInterval(lalonde$p.score,
quantile(lalonde$p.score,
(0:6)/6), all.inside = TRUE)
# data frame interface:
bal.tab(covariates, treat = "treat", data = lalonde,
subclass = "subclass", disp.subclass = TRUE,
s.d.denom = "pooled")
# Formula interface:
bal.tab(treat ~ age + educ + race, data = lalonde,
subclass = "subclass", disp.subclass = TRUE,
s.d.denom = "pooled")
Run the code above in your browser using DataLab