Learn R Programming

cobin (version 1.0.1.3)

pcobin: Cumulative distribution function of cobin (continuous binomial) distribution

Description

Continuous binomial distribution with natural parameter \(\theta\) and dispersion parameter \(1/\lambda\), in short \(Y \sim cobin(\theta, \lambda^{-1})\), has density $$ p(y; \theta, \lambda^{-1}) = h(y;\lambda) \exp(\lambda \theta y - \lambda B(\theta)), \quad 0 \le y \le 1 $$ where \(B(\theta) = \log\{(e^\theta - 1)/\theta\}\) and \(h(y;\lambda) = \frac{\lambda}{(\lambda-1)!}\sum_{k=0}^{\lambda} (-1)^k {\lambda \choose k} \max(0,\lambda y-k)^{\lambda-1}\). When \(\lambda = 1\), it becomes continuous Bernoulli distribution.

Usage

pcobin(q, theta, lambda)

Value

c.d.f. of \(cobin(\theta,\lambda^{-1})\)

Arguments

q

num (length n), between 0 and 1, evaluation point

theta

scalar, natural parameter

lambda

integer, inverse of dispersion parameter

Examples

Run this code

xgrid = seq(0, 1, length = 500)
out = pcobin(xgrid, 1, 2)
plot(ecdf(rcobin(10000, 1, 2)))
lines(xgrid, out, col = 2)

Run the code above in your browser using DataLab