Learn R Programming

codacore

Update: CoDaCoRe is now live on CRAN

A self-contained, up-to-date implementation of CoDaCoRe, in the R programming language, by the original authors.

The CoDaCoRe guide contains a detailed tutorial on installation, usage and functionality.

Note this repository is under active development. If you would like to use CoDaCoRe on your dataset, and have any questions regarding the installation, usage, implementation, or model itself, do not hesitate to contact eg2912@columbia.edu. Some previously asked questions are available on the Issues page. Contributions, fixes, and feature requests are also welcome - please create an issue, submit a pull request, or email me.

Quick-start: how to install and run CoDaCoRe

  1. We can install CoDaCoRe by running (further details in the guide):
install.packages('codacore')
  1. To fit codacore on some data and check the results (further details in the guide:
library("codacore")
help(codacore) # if in doubt, check documentation
data("Crohn") # load some data and apply codacore
x <- Crohn[, -ncol(Crohn)] + 1
y <- Crohn[, ncol(Crohn)]
model = codacore(
    x, # compositional input, e.g., HTS count data 
    y, # response variable, typically a 0/1 binary indicator 
    logRatioType = "balances", # can use "amalgamations" instead, or abbreviations "B" and "A"
    lambda = 1 # regularization strength (default corresponds to 1SE rule) 
)
print(model)
plot(model)

Reference

Gordon-Rodriguez, Elliott, Thomas P. Quinn, and John P. Cunningham. "Learning sparse log-ratios for high-throughput sequencing data." Bioinformatics 38.1 (2022): 157-163. [link]

Quinn, Thomas P., Elliott Gordon-Rodriguez, and Ionas Erb. "A critique of differential abundance analysis, and advocacy for an alternative." arXiv preprint arXiv:2104.07266 (2021). [link]

Acknowledgements

Thanks for your contributions to codacore!

  • Marcus Fedarko
  • Gregor Seyer
  • Nick Youngblut
  • Antonio Garrido Fernandez

Copy Link

Version

Install

install.packages('codacore')

Monthly Downloads

188

Version

0.0.4

License

MIT + file LICENSE

Maintainer

Elliott Gordon-Rodriguez

Last Published

August 29th, 2022

Functions in codacore (0.0.4)

getNumeratorParts

getNumeratorParts
getSlopes

getSlopes
FranzosaMetabolite

Metabolite relative abundances (Franzosa et al., 2019)
print.codacore

print
sCD14

Microbiome and sCD14 inflammation parameter
getNumLogRatios

getNumLogRatios
simulateHTS

simulateHTS
predict.codacore

predict
plotROC

plotROC
plot.codacore

plot
HIV

Microbiome, HIV infection and MSM factor
getTidyTable

getTidyTable
FranzosaMicrobiome

Micriobiome relative abundances (Franzosa et al., 2019)
getLogRatios

getLogRatios
activeInputs.codacore

activeInputs
Crohn

Microbiome composition related to Crohn`s disease study
codacore

codacore
getDenominatorParts

getDenominatorParts
getBinaryPartitions

getBinaryPartitions