# Example 1
I <- 100
J <- 1
K <- 250
M <- 1
N <- 1
omega_mu <- matrix(data = 0, nrow = 1, ncol = M * N)
omega_sigma2 <- diag(x = 1, nrow = M * N)
gamma <- diag(x = 1, nrow = J * M, ncol = M * N)
lambda_mu <- matrix(data = 1, nrow = 1, ncol = M)
lambda_sigma2 <- diag(x = 0.25, nrow = M)
zeta_mu <- matrix(data = rep(x = 0, times = M * J), nrow = 1, ncol = J * M)
zeta_sigma2 <- diag(x = 0, nrow = J * M, ncol = J * M)
nu_mu <- matrix(data = 0, nrow = 1, ncol = 1)
nu_sigma2 <- matrix(data = 1, nrow = 1, ncol = 1)
set.seed(624)
ex1 <- dich_response_sim(I = I, J = J, K = K, M = M, N = N,
omega_mu = omega_mu, omega_sigma2 = omega_sigma2,
gamma = gamma, lambda_mu = lambda_mu,
lambda_sigma2 = lambda_sigma2, nu_mu = nu_mu,
nu_sigma2 = nu_sigma2, zeta_mu = zeta_mu,
zeta_sigma2 = zeta_sigma2)
# Example 2
I <- 100
J <- 1
K <- 50
M <- 2
N <- 1
omega_mu <- matrix(data = c(3.50, 1.00), nrow = 1, ncol = M * N)
omega_sigma2 <- diag(x = c(0.90, 0.30), nrow = M * N)
gamma <- diag(x = 1, nrow = J * M, ncol = M * N)
key <- rbinom(n = I * J, size = 1, prob = .7) + 1
measure_weights <-
matrix(data = c(0.5, -1.0, 0.5, 1.0), nrow = 2, ncol = M, byrow = TRUE)
lambda <- matrix(data = 0, nrow = I * J, ncol = J * M)
for(j in 1:J) {
lambda[(1 + (j - 1) * I):(j * I), (1 + (j - 1) * M):(j * M)] <-
measure_weights[key, ][(1 + (j - 1) * I):(j * I), ]
}
zeta_mu <- matrix(data = rep(x = 0, times = M * J), nrow = 1, ncol = J * M)
zeta_sigma2 <- diag(x = 0, nrow = J * M, ncol = J * M)
nu_mu <- matrix(data = 0, nrow = 1, ncol = 1)
nu_sigma2 <- matrix(data = .2, nrow = 1, ncol = 1)
set.seed(624)
ex2 <- dich_response_sim(I = I, J = J, K = K, M = M, N = N,
omega_mu = omega_mu, omega_sigma2 = omega_sigma2,
gamma = gamma, lambda = lambda, nu_mu = nu_mu,
nu_sigma2 = nu_sigma2, zeta_mu = zeta_mu,
zeta_sigma2 = zeta_sigma2, key = key)
# Example 3
I <- 20
J <- 10
K <- 50
M <- 2
N <- 2
omega_mu <- matrix(data = c(2.50, -2.00, 0.50, 0.00), nrow = 1, ncol = M * N)
omega_sigma2 <- diag(x = c(0.90, 0.70, 0.30, 0.10), nrow = M * N)
contrast_codes <- cbind(1, contr.poly(n = J))[, 1:N]
gamma <- matrix(data = 0, nrow = J * M, ncol = M * N)
for(j in 1:J) {
for(m in 1:M) {
gamma[(m + M * (j - 1)), (((m - 1) * N + 1):((m - 1) * N + N))] <-
contrast_codes[j, ]
}
}
key <- rbinom(n = I * J, size = 1, prob = .7) + 1
measure_weights <-
matrix(data = c(0.5, -1.0, 0.5, 1.0), nrow = 2, ncol = M, byrow = TRUE)
lambda <- matrix(data = 0, nrow = I * J, ncol = J * M)
for(j in 1:J) {
lambda[(1 + (j - 1) * I):(j * I), (1 + (j - 1) * M):(j * M)] <-
measure_weights[key, ][(1 + (j - 1) * I):(j * I), ]
}
zeta_mu <- matrix(data = rep(x = 0, times = M * J), nrow = 1, ncol = J * M)
zeta_sigma2 <- diag(x = 0.2, nrow = J * M, ncol = J * M)
nu_mu <- matrix(data = c(0.00), nrow = 1, ncol = 1)
nu_sigma2 <- matrix(data = c(0.20), nrow = 1, ncol = 1)
set.seed(624)
ex3 <- dich_response_sim(I = I, J = J, K = K, M = M, N = N,
omega_mu = omega_mu, omega_sigma2 = omega_sigma2,
gamma = gamma, lambda = lambda, nu_mu = nu_mu,
nu_sigma2 = nu_sigma2, zeta_mu = zeta_mu,
zeta_sigma2 = zeta_sigma2, key = key)
# Example 4
I <- 25
J <- 2
K <- 200
M <- 1
N <- 2
omega_mu <- matrix(data = c(1, -2), nrow = 1, ncol = M * N)
omega_sigma2 <- diag(x = c(1.00, 0.25), nrow = M * N)
contrast_codes <- cbind(1, contr.treatment(n = J))[, 1:N]
gamma <- matrix(data = 0, nrow = J * M, ncol = M * N)
for(j in 1:J) {
for(m in 1:M) {
gamma[(m + M * (j - 1)), (((m - 1) * N + 1):((m - 1) * N + N))] <-
contrast_codes[j, ]
}
}
lambda <- matrix(data = 0, nrow = I * J, ncol = J * M)
lam_vals <- rnorm(I, 1.5, .23)
for (j in 1:J) {
lambda[(1 + (j - 1) * I):(j * I), (1 + (j - 1) * M):(j * M)] <- lam_vals
}
zeta_mu <- matrix(data = rep(x = 0, times = M * J), nrow = 1, ncol = J * M)
zeta_sigma2 <- diag(x = 0.2, nrow = J * M, ncol = J * M)
nu <- matrix(data = rnorm(n = I, mean = 0, sd = 2), nrow = I * J, ncol = 1)
set.seed(624)
ex4 <- dich_response_sim(I = I, J = J, K = K, M = M, N = N,
omega_mu = omega_mu, omega_sigma2 = omega_sigma2,
gamma = gamma, lambda = lambda, nu = nu,
zeta_mu = zeta_mu, zeta_sigma2 = zeta_sigma2)
# Example 5
I <- 20
J <- 10
K <- 1
M <- 2
N <- 2
omega_mu <- matrix(data = c(2.50, -2.00, 0.50, 0.00), nrow = 1, ncol = M * N)
omega_sigma2 <- diag(x = c(0.90, 0.70, 0.30, 0.10), nrow = M * N)
contrast_codes <- cbind(1, contr.poly(n = J))[, 1:N]
gamma <- matrix(data = 0, nrow = J * M, ncol = M * N)
for(j in 1:J) {
for(m in 1:M) {
gamma[(m + M * (j - 1)), (((m - 1) * N + 1):((m - 1) * N + N))] <-
contrast_codes[j, ]
}
}
key <- rbinom(n = I * J, size = 1, prob = .7) + 1
measure_weights <-
matrix(data = c(0.5, -1.0, 0.5, 1.0), nrow = 2, ncol = M, byrow = TRUE)
lambda <- matrix(data = 0, nrow = I * J, ncol = J * M)
for(j in 1:J) {
lambda[(1 + (j - 1) * I):(j * I), (1 + (j - 1) * M):(j * M)] <-
measure_weights[key, ][(1 + (j - 1) * I):(j * I), ]
}
zeta_mu <- matrix(data = rep(x = 0, times = M * J), nrow = 1, ncol = J * M)
zeta_sigma2 <- diag(x = 0.2, nrow = J * M, ncol = J * M)
nu_mu <- matrix(data = c(0.00), nrow = 1, ncol = 1)
nu_sigma2 <- matrix(data = c(0.20), nrow = 1, ncol = 1)
set.seed(624)
ex5 <- dich_response_sim(I = I, J = J, K = K, M = M, N = N,
omega_mu = omega_mu, omega_sigma2 = omega_sigma2,
gamma = gamma, lambda = lambda, nu_mu = nu_mu,
nu_sigma2 = nu_sigma2, zeta_mu = zeta_mu,
zeta_sigma2 = zeta_sigma2, key = key)
Run the code above in your browser using DataLab