Learn R Programming

⚠️There's a newer version (0.3.0) of this package.Take me there.

cohortBuilder

Overview

cohortBuilder provides common API for creating cohorts on multiple data sources, such as local data frame, database schema or external data api.

With only two steps:

  1. Configuring data source with set_source.
  2. Initializing cohort with cohort.

You can operate on data using common methods, such as:

  • filter - to define and run to apply filtering rules,
  • step - to perform multi-stage filtering,
  • get_data, stat, attrition, plot_data - to extract, sum up or visualize your cohort data.

With cohortBuilder you can share the cohort easier with useful methods:

  • code - to get reproducible cohort creation code,
  • get_state - to get cohort state (e.g. in JSON) that can be then easily restored with restore.

Or modify the cohort configuration with:

  • add_filter, rm_filter, update_filter - to manage filters definition
  • add_step, rm_step - to manage filtering steps,
  • update_source - to manage the cohort source.

Data sources and extensions

The goal of cohortBuilder is to provide common API for creating data cohorts, but also to be easily extendable for working on different data sources (and interactive dashboards).

cohortBuilder allows to operate on local data frames (or list of data frames), yet you may easily switch to a database source by loading cohortBuilder.db layer.

As a standalone R package, you use cohortBuilder to perform all the operations in non-interactive R script, but its shiny layer shinyCohortBuilder package helps you to easily switch to intuitive gui mode. More to that you may integrate cohortBuilder with your custom Shiny application.

If you want to learn how to write custom source extension, please check vignette("custom-extensions").

Installation

# CRAN version
install.packages("cohortBuilder")

# Latest development version
remotes::install_github("https://github.com/r-world-devs/cohortBuilder")

Usage

librarian_source <- set_source(
  as.tblist(librarian)
)

coh <- librarian_source %>% 
  cohort(
    filter(
      "discrete", id = "author", dataset = "books", 
      variable = "author", value = "Dan Brown"
    ),
    filter(
      "range", id = "copies", dataset = "books", 
      variable = "copies", range = c(5, 10)
    ),
    filter(
      "date_range", id = "registered", dataset = "borrowers", 
      variable = "registered", range = c(as.Date("2010-01-01"), Inf)
    ) 
  ) %>% 
  run()

get_data(coh)
#> $books
#> # A tibble: 1 × 6
#>   isbn          title             genre                       publisher 
#>   <chr>         <chr>             <chr>                       <chr>     
#> 1 0-385-50420-9 The Da Vinci Code Crime, Thriller & Adventure Transworld
#>   author    copies
#>   <chr>      <int>
#> 1 Dan Brown      7
#> 
#> $borrowers
#> # A tibble: 8 × 6
#>   id     registered address                                         
#>   <chr>  <date>     <chr>                                           
#> 1 000013 2011-09-30 534 Iroquois Ave. Watertown, MA 02472           
#> 2 000014 2013-01-12 7968 Victoria Drive Dearborn, MI 48124          
#> 3 000015 2013-12-24 9484 Somerset Road Romeoville, IL 60446         
#> 4 000016 2014-01-20 48 Prairie Ave. Palos Verdes Peninsula, CA 90274
#> 5 000017 2014-04-07 8501 Lawrence Rd. Terre Haute, IN 47802         
#>   name                    phone_number program 
#>   <chr>                   <chr>        <chr>   
#> 1 Dr. Sharif Kunde        104-832-8013 premium 
#> 2 Marlena Reichert PhD    044-876-8419 vip     
#> 3 Mr. Brandan Oberbrunner 568-044-7463 vip     
#> 4 Lloyd Adams III         001-017-0211 standard
#> 5 Randy Ziemann           895-995-2326 premium 
#> # … with 3 more rows
#> 
#> $issues
#> # A tibble: 50 × 4
#>   id     borrower_id isbn              date      
#>   <chr>  <chr>       <chr>             <date>    
#> 1 000001 000019      0-676-97976-9     2015-03-17
#> 2 000002 000010      978-0-7528-6053-4 2008-09-13
#> 3 000003 000016      0-09-177373-3     2014-09-28
#> 4 000004 000005      0-224-06252-2     2005-11-14
#> 5 000005 000004      0-340-89696-5     2006-03-19
#> # … with 45 more rows
#> 
#> $returns
#> # A tibble: 30 × 2
#>   id     date      
#>   <chr>  <date>    
#> 1 000001 2015-04-06
#> 2 000003 2014-10-23
#> 3 000004 2005-12-29
#> 4 000005 2006-03-26
#> 5 000006 2016-08-30
#> # … with 25 more rows
#> 
#> attr(,"class")
#> [1] "tblist"
#> attr(,"call")
#> as.tblist(librarian)
coh <- librarian_source %>% 
  cohort() %->% 
  step(
    filter(
      "discrete", id = "author", dataset = "books", 
      variable = "author", value = "Dan Brown"
    ),
    filter(
      "date_range", id = "registered", dataset = "borrowers", 
      variable = "registered", range = c(as.Date("2010-01-01"), Inf)
    )
  ) %->% 
  step(
    filter(
      "range", id = "copies", dataset = "books", 
      variable = "copies", range = c(5, 10)
    )
  ) %>% 
  run()
get_data(coh, step_id = 1)
#> $books
#> # A tibble: 2 × 6
#>   isbn          title             genre                       publisher 
#>   <chr>         <chr>             <chr>                       <chr>     
#> 1 0-385-50420-9 The Da Vinci Code Crime, Thriller & Adventure Transworld
#> 2 0-671-02735-2 Angels and Demons Crime, Thriller & Adventure Transworld
#>   author    copies
#>   <chr>      <int>
#> 1 Dan Brown      7
#> 2 Dan Brown      4
#> 
#> $borrowers
#> # A tibble: 8 × 6
#>   id     registered address                                         
#>   <chr>  <date>     <chr>                                           
#> 1 000013 2011-09-30 534 Iroquois Ave. Watertown, MA 02472           
#> 2 000014 2013-01-12 7968 Victoria Drive Dearborn, MI 48124          
#> 3 000015 2013-12-24 9484 Somerset Road Romeoville, IL 60446         
#> 4 000016 2014-01-20 48 Prairie Ave. Palos Verdes Peninsula, CA 90274
#> 5 000017 2014-04-07 8501 Lawrence Rd. Terre Haute, IN 47802         
#>   name                    phone_number program 
#>   <chr>                   <chr>        <chr>   
#> 1 Dr. Sharif Kunde        104-832-8013 premium 
#> 2 Marlena Reichert PhD    044-876-8419 vip     
#> 3 Mr. Brandan Oberbrunner 568-044-7463 vip     
#> 4 Lloyd Adams III         001-017-0211 standard
#> 5 Randy Ziemann           895-995-2326 premium 
#> # … with 3 more rows
#> 
#> $issues
#> # A tibble: 50 × 4
#>   id     borrower_id isbn              date      
#>   <chr>  <chr>       <chr>             <date>    
#> 1 000001 000019      0-676-97976-9     2015-03-17
#> 2 000002 000010      978-0-7528-6053-4 2008-09-13
#> 3 000003 000016      0-09-177373-3     2014-09-28
#> 4 000004 000005      0-224-06252-2     2005-11-14
#> 5 000005 000004      0-340-89696-5     2006-03-19
#> # … with 45 more rows
#> 
#> $returns
#> # A tibble: 30 × 2
#>   id     date      
#>   <chr>  <date>    
#> 1 000001 2015-04-06
#> 2 000003 2014-10-23
#> 3 000004 2005-12-29
#> 4 000005 2006-03-26
#> 5 000006 2016-08-30
#> # … with 25 more rows
#> 
#> attr(,"class")
#> [1] "tblist"
#> attr(,"call")
#> as.tblist(librarian)
get_data(coh, step_id = 2)
#> $books
#> # A tibble: 1 × 6
#>   isbn          title             genre                       publisher 
#>   <chr>         <chr>             <chr>                       <chr>     
#> 1 0-385-50420-9 The Da Vinci Code Crime, Thriller & Adventure Transworld
#>   author    copies
#>   <chr>      <int>
#> 1 Dan Brown      7
#> 
#> $borrowers
#> # A tibble: 8 × 6
#>   id     registered address                                         
#>   <chr>  <date>     <chr>                                           
#> 1 000013 2011-09-30 534 Iroquois Ave. Watertown, MA 02472           
#> 2 000014 2013-01-12 7968 Victoria Drive Dearborn, MI 48124          
#> 3 000015 2013-12-24 9484 Somerset Road Romeoville, IL 60446         
#> 4 000016 2014-01-20 48 Prairie Ave. Palos Verdes Peninsula, CA 90274
#> 5 000017 2014-04-07 8501 Lawrence Rd. Terre Haute, IN 47802         
#>   name                    phone_number program 
#>   <chr>                   <chr>        <chr>   
#> 1 Dr. Sharif Kunde        104-832-8013 premium 
#> 2 Marlena Reichert PhD    044-876-8419 vip     
#> 3 Mr. Brandan Oberbrunner 568-044-7463 vip     
#> 4 Lloyd Adams III         001-017-0211 standard
#> 5 Randy Ziemann           895-995-2326 premium 
#> # … with 3 more rows
#> 
#> $issues
#> # A tibble: 50 × 4
#>   id     borrower_id isbn              date      
#>   <chr>  <chr>       <chr>             <date>    
#> 1 000001 000019      0-676-97976-9     2015-03-17
#> 2 000002 000010      978-0-7528-6053-4 2008-09-13
#> 3 000003 000016      0-09-177373-3     2014-09-28
#> 4 000004 000005      0-224-06252-2     2005-11-14
#> 5 000005 000004      0-340-89696-5     2006-03-19
#> # … with 45 more rows
#> 
#> $returns
#> # A tibble: 30 × 2
#>   id     date      
#>   <chr>  <date>    
#> 1 000001 2015-04-06
#> 2 000003 2014-10-23
#> 3 000004 2005-12-29
#> 4 000005 2006-03-26
#> 5 000006 2016-08-30
#> # … with 25 more rows
#> 
#> attr(,"class")
#> [1] "tblist"
#> attr(,"call")
#> as.tblist(librarian)
update_filter(
  coh, step_id = 1, filter_id = "author",
  range = c(5, 6)
)
run(coh)

get_data(coh, step_id = 2)
#> $books
#> # A tibble: 1 × 6
#>   isbn          title             genre                       publisher 
#>   <chr>         <chr>             <chr>                       <chr>     
#> 1 0-385-50420-9 The Da Vinci Code Crime, Thriller & Adventure Transworld
#>   author    copies
#>   <chr>      <int>
#> 1 Dan Brown      7
#> 
#> $borrowers
#> # A tibble: 8 × 6
#>   id     registered address                                         
#>   <chr>  <date>     <chr>                                           
#> 1 000013 2011-09-30 534 Iroquois Ave. Watertown, MA 02472           
#> 2 000014 2013-01-12 7968 Victoria Drive Dearborn, MI 48124          
#> 3 000015 2013-12-24 9484 Somerset Road Romeoville, IL 60446         
#> 4 000016 2014-01-20 48 Prairie Ave. Palos Verdes Peninsula, CA 90274
#> 5 000017 2014-04-07 8501 Lawrence Rd. Terre Haute, IN 47802         
#>   name                    phone_number program 
#>   <chr>                   <chr>        <chr>   
#> 1 Dr. Sharif Kunde        104-832-8013 premium 
#> 2 Marlena Reichert PhD    044-876-8419 vip     
#> 3 Mr. Brandan Oberbrunner 568-044-7463 vip     
#> 4 Lloyd Adams III         001-017-0211 standard
#> 5 Randy Ziemann           895-995-2326 premium 
#> # … with 3 more rows
#> 
#> $issues
#> # A tibble: 50 × 4
#>   id     borrower_id isbn              date      
#>   <chr>  <chr>       <chr>             <date>    
#> 1 000001 000019      0-676-97976-9     2015-03-17
#> 2 000002 000010      978-0-7528-6053-4 2008-09-13
#> 3 000003 000016      0-09-177373-3     2014-09-28
#> 4 000004 000005      0-224-06252-2     2005-11-14
#> 5 000005 000004      0-340-89696-5     2006-03-19
#> # … with 45 more rows
#> 
#> $returns
#> # A tibble: 30 × 2
#>   id     date      
#>   <chr>  <date>    
#> 1 000001 2015-04-06
#> 2 000003 2014-10-23
#> 3 000004 2005-12-29
#> 4 000005 2006-03-26
#> 5 000006 2016-08-30
#> # … with 25 more rows
#> 
#> attr(,"class")
#> [1] "tblist"
#> attr(,"call")
#> as.tblist(librarian)
code(coh)
#> .pre_filtering <- function(source, data_object, step_id) {
#>     for (dataset in names(data_object)) {
#>         attr(data_object[[dataset]], "filtered") <- FALSE
#>     }
#>     return(data_object)
#> }
#> .run_binding <- function(source, binding_key, data_object_pre, data_object_post,
#>     ...) {
#>     binding_dataset <- binding_key$update$dataset
#>     dependent_datasets <- names(binding_key$data_keys)
#>     active_datasets <- data_object_post %>%
#>         purrr::keep(~attr(., "filtered")) %>%
#>         names()
#>     if (!any(dependent_datasets %in% active_datasets)) {
#>         return(data_object_post)
#>     }
#>     key_values <- NULL
#>     common_key_names <- paste0("key_", seq_along(binding_key$data_keys[[1]]$key))
#>     for (dependent_dataset in dependent_datasets) {
#>         key_names <- binding_key$data_keys[[dependent_dataset]]$key
#>         tmp_key_values <- dplyr::distinct(data_object_post[[dependent_dataset]][,
#>             key_names, drop = FALSE]) %>%
#>             stats::setNames(common_key_names)
#>         if (is.null(key_values)) {
#>             key_values <- tmp_key_values
#>         } else {
#>             key_values <- dplyr::inner_join(key_values, tmp_key_values, by = common_key_names)
#>         }
#>     }
#>     data_object_post[[binding_dataset]] <- dplyr::inner_join(switch(as.character(binding_key$post),
#>         `FALSE` = data_object_pre[[binding_dataset]], `TRUE` = data_object_post[[binding_dataset]]),
#>         key_values, by = stats::setNames(common_key_names, binding_key$update$key))
#>     if (binding_key$activate) {
#>         attr(data_object_post[[binding_dataset]], "filtered") <- TRUE
#>     }
#>     return(data_object_post)
#> }
#> source <- list(dtconn = as.tblist(librarian))
#> data_object <- source$dtconn
#> step_id <- "1"
#> pre_data_object <- data_object
#> data_object <- .pre_filtering(source, data_object, "1")
#> data_object[["books"]] <- data_object[["books"]] %>%
#>     dplyr::filter(author %in% c("Dan Brown", NA))
#> attr(data_object[["books"]], "filtered") <- TRUE
#> data_object[["borrowers"]] <- data_object[["borrowers"]] %>%
#>     dplyr::filter((registered <= Inf & registered >= 14610) | is.na(registered))
#> attr(data_object[["borrowers"]], "filtered") <- TRUE
#> data_object <- .post_filtering(source, data_object, "1")
#> for (binding_key in binding_keys) {
#>     data_object <- .run_binding(source, binding_key, pre_data_object, data_object)
#> }
#> step_id <- "2"
#> data_object <- .pre_filtering(source, data_object, "2")
#> data_object[["books"]] <- data_object[["books"]] %>%
#>     dplyr::filter((copies <= 10 & copies >= 5) | is.na(copies))
#> attr(data_object[["books"]], "filtered") <- TRUE
#> data_object <- .post_filtering(source, data_object, "2")
attrition(coh, dataset = "books")
get_state(coh, json = TRUE)
#> [{"step":"1","filters":[{"range":[5,6],"type":"discrete","id":"author","name":"author","variable":"author","value":"Dan Brown","dataset":"books","keep_na":true,"description":null,"active":true},{"type":"date_range","id":"registered","name":"registered","variable":"registered","range":["2010-01-01","Inf"],"dataset":"borrowers","keep_na":true,"description":null,"active":true}]},{"step":"2","filters":[{"type":"range","id":"copies","name":"copies","variable":"copies","range":[5,10],"dataset":"books","keep_na":true,"description":null,"active":true}]}]

Acknowledgement

Special thanks to:

  • Kamil Wais for highlighting the need for the package and its relevance to real-world applications.
  • Adam Foryś for technical support, numerous suggestions for the current and future implementation of the package.
  • Paweł Kawski for indication of initial assumptions about the package based on real-world medical data.

Getting help

In a case you found any bugs, have feature request or general question please file an issue at the package Github. You may also contact the package author directly via email at krystian8207@gmail.com.

Copy Link

Version

Install

install.packages('cohortBuilder')

Monthly Downloads

223

Version

0.2.0

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Krystian Igras

Last Published

February 28th, 2023

Functions in cohortBuilder (0.2.0)

add_source

Add source to Cohort object.
binding-keys

Describe data relations with binding keys
add_filter

Add filter definition
code

Return reproducible data filtering code.
Cohort

R6 class representing Cohort object.
add_step

Add filtering step definition
cohort-methods

Cohort related methods
cohortBuilder-package

Create data source cohort
.get_item

Return list of objects matching provided condition.
Source

R6 class representing a data source
data_key

Define Source dataset key
filter-types

Filter types
description

Show source data or filter description
attrition

Show attrition plot.
.as_constructor

Attach proper class to filter constructor
filter

Define Cohort filter
get_data

Get step related data
.if_value

Return default value if values are equal
filter-source-types

Filter Source types methods
get_state

Get Cohort configuration state.
create-cohort

Create new 'Cohort' object
restore

Restore Cohort object.
primary_keys

Define Source datasets primary keys
.gen_id

Generate random ID
managing-source

Managing the Source object
creating-filters

Define custom filter.
%->%

Operator simplifying adding steps or filters to Cohort and Source objects
.get_method

Get function definition
hooks

Cohort hooks.
run

Trigger data calculations.
step

Create filtering step
sum_up

Sum up Cohort state.
set_source

Create Cohort source
librarian

Sample of library database
update_filter

Update filter definition
tblist

Create in memory tables connection
source-layer

Source compatibility methods.
plot_data

Plot filter related Cohort data.
stat

Get Cohort related statistics.
managing-cohort

Managing the Cohort object
rm_step

Remove filtering step definition
rm_filter

Remove filter definition
update_source

Update source in Cohort object.