# NOT RUN {
## World Development Panel Data
head(wlddev)                                                    # View data
qsu(wlddev, pid = ~ iso3c, cols = 9:12, vlabels = TRUE)         # Sumarizing data
str(psmat(wlddev$PCGDP, wlddev$iso3c, wlddev$year))             # Generating matrix of GDP
r <- psmat(wlddev, PCGDP ~ iso3c, ~ year)                       # Same thing using data.frame method
plot(r, main = vlabels(wlddev)[9], xlab = "Year")               # Plot the matrix
str(r)                                                          # See srructure
str(psmat(wlddev$PCGDP, wlddev$iso3c))                          # The Data is sorted, could omit t
str(psmat(wlddev$PCGDP, 216))                                   # This panel is also balanced, so
# ..indicating the number of groups would be sufficient to obtain a matrix
ar <- psmat(wlddev, ~ iso3c, ~ year, 9:12)                      # Get array of transposed matrices
str(ar)
plot(ar)
plot(ar, legend = TRUE)
plot(psmat(collap(wlddev, ~region+year, cols = 9:12),           # More legible and fancy plot
           ~region, ~year), legend = TRUE,
     labs = vlabels(wlddev)[9:12])
psml <- psmat(wlddev, ~ iso3c, ~ year, 9:12, array = FALSE)     # This gives list of ps-matrices
head(unlist2d(psml, "Variable", "Country", id.factor = TRUE))   # Using unlist2d, can generate DF
## Using plm simplifies things
pwlddev <- plm::pdata.frame(wlddev, index = c("iso3c","year"))  # Creating a Panel-Data Frame
PCGDP <- pwlddev$PCGDP                                          # A panel-Series of GDP per Capita
psmat(PCGDP)                                                    # Same as above, more parsimonious
plot(psmat(PCGDP))
plot(psmat(pwlddev[9:12]))
plot(psmat(G(pwlddev[9:12])))                                   # Here plotting panel- growth rates
# }
Run the code above in your browser using DataLab