Learn R Programming

collector (version 0.1.3)

prepare_data: Create one or more quantitative scenarios objects suitable for simulation by 'evaluator'

Description

Given parameters for the scenarios, threat communities, capabilities, and the question set, generate a list of tidyrisk_scenario objects that may be fed into evaluator::run_simulation for Monte Carlo simulation.

Usage

prepare_data(
  scenario_parameters,
  capability_parameters,
  threat_parameters,
  questions
)

Arguments

scenario_parameters

Scenarios with final parameters defined.

capability_parameters

Capabilities with final parameters defined.

threat_parameters

Threat communities with final parameters defined.

questions

Value

A list of one or more tidyrisk_scenario objects.

Examples

Run this code
# NOT RUN {
suppressPackageStartupMessages(library(dplyr))
data(mc_domains, mc_capabilities, mc_scenarios, mc_sme_top_domains,
     calibration_questions, mc_threat_communities)
question_set <- tidyrisk_question_set(mc_domains, mc_scenarios, mc_capabilities,
                          calibration_questions, mc_sme_top_domains,
                          mc_threat_communities)
response_set <- tidyrisk_response_set(mc_calibration_answers,
                          mc_scenario_answers, mc_capability_answers)
sme_weightings <- generate_weights(question_set, response_set)
data(mc_scenario_parameters_fitted, mc_capability_parameters_fitted,
                          mc_threat_parameters_fitted)
scenario_parameters <- left_join(mc_scenario_parameters_fitted, sme_weightings, by = "sme") %>%
  combine_scenario_parameters()
capability_parameters <- left_join(mc_capability_parameters_fitted, sme_weightings, by = "sme") %>%
  combine_capability_parameters()
quantitative_scenarios <- prepare_data(scenario_parameters,
                                       capability_parameters,
                                       mc_threat_parameters_fitted,
                                       question_set)
# }

Run the code above in your browser using DataLab