data(
vi,
vi_predictors
)
#subset to limit example run time
vi <- vi[1:1000, ]
#without response
#without preference_order
#permissive max_cor and max_vif
#only numeric variables in output
selected.predictors <- collinear(
df = vi,
predictors = vi_predictors,
max_cor = 0.8,
max_vif = 10
)
selected.predictors
#without response
#without preference_order
#restrictive max_cor and max_vif
#only numeric variables in output
selected.predictors <- collinear(
df = vi,
predictors = vi_predictors,
max_cor = 0.5,
max_vif = 2.5
)
selected.predictors
#with response
#without preference_order
#restrictive max_cor and max_vif
#numerics and categorical variables in output
selected.predictors <- collinear(
df = vi,
response = "vi_mean",
predictors = vi_predictors,
max_cor = 0.5,
max_vif = 2.5
)
selected.predictors
#with response
#with user-defined preference_order
#restrictive max_cor and max_vif
#numerics and categorical variables in output
selected.predictors <- collinear(
df = vi,
response = "vi_mean",
predictors = vi_predictors,
preference_order = c(
"soil_temperature_mean",
"swi_mean",
"rainfall_mean",
"evapotranspiration_mean"
),
max_cor = 0.5,
max_vif = 2.5
)
selected.predictors
#with response
#with automated preference_order
#restrictive max_cor and max_vif
#numerics and categorical variables in output
preference.order <- preference_order(
df = vi,
response = "vi_mean",
predictors = vi_predictors,
f = f_rsquared, #cor(response, predictor)
workers = 1
)
selected.predictors <- collinear(
df = vi,
response = "vi_mean",
predictors = vi_predictors,
preference_order = preference.order,
max_cor = 0.5,
max_vif = 2.5
)
selected.predictors
Run the code above in your browser using DataLab