#subset to limit example run time
df <- vi[1:1000, ]
#only numeric predictors only to speed-up examples
#categorical predictors are supported, but result in a slower analysis
predictors <- vi_predictors_numeric[1:8]
#predictors has mixed types
sapply(
X = df[, predictors, drop = FALSE],
FUN = class
)
#parallelization setup
future::plan(
future::multisession,
workers = 2 #set to parallelly::availableCores() - 1
)
#progress bar
# progressr::handlers(global = TRUE)
#without preference order
x <- cor_select(
df = df,
predictors = predictors,
max_cor = 0.75
)
#with custom preference order
x <- cor_select(
df = df,
predictors = predictors,
preference_order = c(
"swi_mean",
"soil_type"
),
max_cor = 0.75
)
#with automated preference order
df_preference <- preference_order(
df = df,
response = "vi_numeric",
predictors = predictors
)
x <- cor_select(
df = df,
predictors = predictors,
preference_order = df_preference,
max_cor = 0.75
)
#resetting to sequential processing
future::plan(future::sequential)
Run the code above in your browser using DataLab