#subsets to limit example run time
df <- vi[1:1000, ]
predictors <- vi_predictors[1:10]
predictors_numeric <- vi_predictors_numeric[1:10]
#parallelization setup
future::plan(
future::multisession,
workers = 2 #set to parallelly::availableCores() - 1
)
#progress bar
# progressr::handlers(global = TRUE)
#numeric response and predictors
#------------------------------------------------
#selects f automatically depending on data features
#applies f_r2_pearson() to compute correlation between response and predictors
df_preference <- preference_order(
df = df,
response = "vi_numeric",
predictors = predictors_numeric,
f = NULL
)
#returns data frame ordered by preference
df_preference
#several responses
#------------------------------------------------
responses <- c(
"vi_categorical",
"vi_counts"
)
preference_list <- preference_order(
df = df,
response = responses,
predictors = predictors
)
#returns a named list
names(preference_list)
preference_list[[1]]
preference_list[[2]]
#can be used in collinear()
# x <- collinear(
# df = df,
# response = responses,
# predictors = predictors,
# preference_order = preference_list
# )
#f function selected by user
#for binomial response and numeric predictors
# preference_order(
# df = vi,
# response = "vi_binomial",
# predictors = predictors_numeric,
# f = f_auc_glm_binomial
# )
#disable parallelization
future::plan(future::sequential)
Run the code above in your browser using DataLab