Internal function to assess whether the input arguments df and predictors result in data dimensions suitable for pairwise correlation analysis.
If the number of rows in df is smaller than 10, an error is issued.
validate_data_cor(
df = NULL,
predictors = NULL,
function_name = "collinear::validate_data_cor()",
quiet = FALSE
)character vector: predictors names
(required; data frame, tibble, or sf) A data frame with responses and predictors. Default: NULL.
(optional; character vector) Names of the predictors to select from df. If omitted, all numeric columns in df are used instead. If argument response is not provided, non-numeric variables are ignored. Default: NULL
(optional, character string) Name of the function performing the check. Default: "collinear::validate_data_cor()"
(optional; logical) If FALSE, messages generated during the execution of the function are printed to the console Default: FALSE
Other data_validation:
validate_data_vif(),
validate_df(),
validate_encoding_arguments(),
validate_predictors(),
validate_preference_order(),
validate_response()