Learn R Programming

⚠️There's a newer version (0.3.9) of this package.Take me there.

colourvalues


What does it do?

It maps viridis colours (by default) to values, and quickly!

Note It does not perform a 1-to-1 mapping of a palette to values. It interpolates the colours from a given palette.

Why did you build it?

I’m aware there are other methods for mapping colours to values. And which do it quick too. But I can never remember them, and I find the interfaces a bit cumbersome. For example, scales::col_numeric(palette = viridisLite::viridis(5), domain = range(1:5))(1:5).

I wanted one function which will work on one argument.

colour_values(1:5)
# [1] "#440154FF" "#3B528BFF" "#21908CFF" "#5DC963FF" "#FDE725FF"
colour_values(letters[1:5])
# [1] "#440154FF" "#3B528BFF" "#21908CFF" "#5DC963FF" "#FDE725FF"

I also want it available at the src (C/C++) level for linking to other packages.


Why do you spell colour with a ‘u’?

Because it’s correct, and R tells us to

For consistency, aim to use British (rather than American) spelling

But don’t worry, color_values(1:5) works as well


How do I install it?

From CRAN

install.packages("colourvalues")

Or install the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("SymbolixAU/colourvalues")

How can I make use of it in my package?

Rcpp

All functions are written in Rcpp. I have exposed some of them in header files so you can “link to” them in your package.

For example, the LinkingTo section in DESCRIPTION will look something like

LinkingTo: 
    Rcpp,
    colourvalues

And in a c++ source file so you can #include the API header

#include "colourvalues/api.hpp"
// [[Rcpp::depends(colourvalues)]]

And call

// return hex colours
colourvalues::api::colour_values_hex()

// return RGP matrix
colourvalues::api::colour_values_rgb()

R

If you’re not using Rcpp, just Import this package like you would any other.

Do you have any examples?

Of course!

256 numbers mapped to a colour

bar_plot <- function(df) {
  barplot( height = df[["a"]], col = df[["col"]], border = NA, space = 0, yaxt = 'n')
}
df <- data.frame(a = 10, x = 1:256)
df$col <- colour_values(df$x, palette = "viridis")
bar_plot( df )

5000 numbers on a non-linear scale

df <- data.frame(a = 10, x = c((1:5000)**3))
df$col <- colour_values(df$x, palette = "viridis")
bar_plot( df )

1000 random numbers

df <- data.frame(a = 10, x = rnorm(n = 1000))
df$col <- colour_values(df$x, palette = "inferno")
bar_plot( df )

Eurgh!

df <- df[with(df, order(x)), ]
bar_plot( df )

That’s better!


Are there only viridis palettes?

No, you can chose one from

colour_palettes()
#  [1] "viridis"        "cividis"        "magma"          "inferno"       
#  [5] "plasma"         "ylorrd"         "ylorbr"         "ylgnbu"        
#  [9] "ylgn"           "reds"           "rdpu"           "purples"       
# [13] "purd"           "pubugn"         "pubu"           "orrd"          
# [17] "oranges"        "greys"          "greens"         "gnbu"          
# [21] "bupu"           "bugn"           "blues"          "spectral"      
# [25] "rdylgn"         "rdylbu"         "rdgy"           "rdbu"          
# [29] "puor"           "prgn"           "piyg"           "brbg"          
# [33] "terrain"        "topo"           "heat"           "cm"            
# [37] "rainbow"        "terrain_hcl"    "heat_hcl"       "sequential_hcl"
# [41] "rainbow_hcl"    "diverge_hcl"    "diverge_hsv"    "ygobb"         
# [45] "matlab_like2"   "matlab_like"    "magenta2green"  "cyan2yellow"   
# [49] "blue2yellow"    "green2red"      "blue2green"     "blue2red"

And you can use show_colours() to view them all. Here’s what some of them look like

show_colours( colours = colour_palettes(c("viridis", "colorspace")))

Do I have to use the in-built palettes?

No, you can use your own specified as a matrix of red, green and blue columns in the range [0,255]

n <- 100
m <- grDevices::colorRamp(c("red", "green"))( (1:n)/n )
df <- data.frame(a = 10, x = 1:n)
df$col <- colour_values(df$x, palette = m)
bar_plot( df )

Do you support ‘alpha’ values

Yep. Either supply a single alpha value for all the colours

## single alpha value for all colours
df <- data.frame(a = 10, x = 1:255)
df$col <- colour_values(df$x, alpha = 50)
bar_plot( df )

Or use a vector of values the same length as x

df <- data.frame(a = 10, x = 1:300, y = rep(c(1:50, 50:1), 3) )
df$col <- colour_values(df$x, alpha = df$y)
bar_plot( df )

Or include the alpha value as a 4th column in the palette matrix

n <- 100
m <- grDevices::colorRamp(c("red", "green"))( (1:n)/n )
## alpha values
m <- cbind(m, seq(0, 255, length.out = 100))
df <- data.frame(a = 10, x = 1:n)
df$col <- colour_values(df$x, palette = m)
bar_plot( df )

Some of my plotting functions don’t support alpha, can I exclude it?

Yep. Set include_alpha = FALSE

colour_values(1:5, include_alpha = F)
# [1] "#440154" "#3B528B" "#21908C" "#5DC963" "#FDE725"
colour_values_rgb(1:5, include_alpha = F)
#      [,1] [,2] [,3]
# [1,]   68    1   84
# [2,]   59   82  139
# [3,]   33  144  140
# [4,]   93  201   99
# [5,]  253  231   37

Can I get a summary of colours to use in a legend?

Yes, for numeric values use the n_summaries argument to specify the number of summary values you’d like

colour_values(1:10, n_summaries = 3)
# $colours
#  [1] "#440154FF" "#482878FF" "#3E4A89FF" "#31688EFF" "#26838EFF"
#  [6] "#1F9D89FF" "#35B779FF" "#6CCE59FF" "#B4DD2CFF" "#FDE725FF"
# 
# $summary_values
# [1] "1.00"  "5.50"  "10.00"
# 
# $summary_colours
# [1] "#440154FF" "#21908CFF" "#FDE725FF"

You can also specify the number of digits you’d like returned in the summary

colour_values(rnorm(n = 10), n_summaries = 3, digits = 2)
# $colours
#  [1] "#FDE725FF" "#3F4888FF" "#38578CFF" "#3C508BFF" "#2B768EFF"
#  [6] "#2A778EFF" "#463580FF" "#440154FF" "#287C8EFF" "#2A778EFF"
# 
# $summary_values
# [1] "-1.78" "0.53"  "2.84" 
# 
# $summary_colours
# [1] "#440154FF" "#21908CFF" "#FDE725FF"

You can also use format = FALSE if you don’t want the summary values formatted.

dte <- seq(as.Date("2018-01-01"), as.Date("2018-02-01"), by = 1)
colour_values(dte, n_summaries = 3)
# $colours
#  [1] "#440154FF" "#470D60FF" "#48196BFF" "#482474FF" "#472E7CFF"
#  [6] "#453882FF" "#414286FF" "#3E4B8AFF" "#3A548CFF" "#365D8DFF"
# [11] "#32658EFF" "#2E6D8EFF" "#2B758EFF" "#287D8EFF" "#25858EFF"
# [16] "#228C8DFF" "#20948CFF" "#1E9C89FF" "#20A386FF" "#25AB82FF"
# [21] "#2DB27DFF" "#39BA76FF" "#48C16EFF" "#58C765FF" "#6ACD5BFF"
# [26] "#7ED34FFF" "#92D742FF" "#A8DB34FF" "#BEDF26FF" "#D4E21BFF"
# [31] "#E9E41AFF" "#FDE725FF"
# 
# $summary_values
# [1] "2018-01-01" "2018-01-16" "2018-02-01"
# 
# $summary_colours
# [1] "#440154FF" "#21908CFF" "#FDE725FF"

colour_values(dte, n_summaries = 3, format = F)
# $colours
#  [1] "#440154FF" "#470D60FF" "#48196BFF" "#482474FF" "#472E7CFF"
#  [6] "#453882FF" "#414286FF" "#3E4B8AFF" "#3A548CFF" "#365D8DFF"
# [11] "#32658EFF" "#2E6D8EFF" "#2B758EFF" "#287D8EFF" "#25858EFF"
# [16] "#228C8DFF" "#20948CFF" "#1E9C89FF" "#20A386FF" "#25AB82FF"
# [21] "#2DB27DFF" "#39BA76FF" "#48C16EFF" "#58C765FF" "#6ACD5BFF"
# [26] "#7ED34FFF" "#92D742FF" "#A8DB34FF" "#BEDF26FF" "#D4E21BFF"
# [31] "#E9E41AFF" "#FDE725FF"
# 
# $summary_values
# [1] 17532.0 17547.5 17563.0
# 
# $summary_colours
# [1] "#440154FF" "#21908CFF" "#FDE725FF"

For categorical values use summary = TRUE to return a uniqe set of the values, and their associated colours

colour_values(sample(letters, size = 50, replace = T), summary = T)
# $colours
#  [1] "#482575FF" "#440154FF" "#345F8DFF" "#DDE318FF" "#22A884FF"
#  [6] "#43BF71FF" "#7AD151FF" "#25848EFF" "#21908CFF" "#440154FF"
# [11] "#DDE318FF" "#482575FF" "#463480FF" "#7AD151FF" "#414487FF"
# [16] "#5DC963FF" "#2A788EFF" "#DDE318FF" "#25848EFF" "#FDE725FF"
# [21] "#BCDF27FF" "#414487FF" "#FDE725FF" "#1E9C89FF" "#482575FF"
# [26] "#414487FF" "#21908CFF" "#7AD151FF" "#481466FF" "#2A788EFF"
# [31] "#481466FF" "#414487FF" "#345F8DFF" "#3B528BFF" "#481466FF"
# [36] "#5DC963FF" "#481466FF" "#5DC963FF" "#43BF71FF" "#9AD93DFF"
# [41] "#BCDF27FF" "#414487FF" "#43BF71FF" "#43BF71FF" "#FDE725FF"
# [46] "#463480FF" "#440154FF" "#2F6C8EFF" "#2A788EFF" "#2FB47CFF"
# 
# $summary_values
#  [1] "a" "c" "d" "e" "f" "g" "h" "j" "k" "m" "n" "p" "q" "r" "s" "t" "v"
# [18] "w" "x" "y" "z"
# 
# $summary_colours
#  [1] "#440154FF" "#481466FF" "#482575FF" "#463480FF" "#414487FF"
#  [6] "#3B528BFF" "#345F8DFF" "#2F6C8EFF" "#2A788EFF" "#25848EFF"
# [11] "#21908CFF" "#1E9C89FF" "#22A884FF" "#2FB47CFF" "#43BF71FF"
# [16] "#5DC963FF" "#7AD151FF" "#9AD93DFF" "#BCDF27FF" "#DDE318FF"
# [21] "#FDE725FF"

I see you support lists, but how does it work?

Basically, it’s the same as un-listing the list to create a vector of all the values, then colouring them.

So if your list contains different types, it will coerce all values to the same type and colour them.

But it returns a list of the same structure.

For example,


l <- list( x = 1:5, y = list(z = letters[1:5] ) )
colour_values( l )
# [[1]]
# [1] "#440154FF" "#482878FF" "#3E4A89FF" "#31688EFF" "#26838EFF"
# 
# [[2]]
# [[2]][[1]]
# [1] "#1F9D89FF" "#35B779FF" "#6CCE59FF" "#B4DD2CFF" "#FDE725FF"

x <- c( 1:5, letters[1:5] )
colour_values( x )
#  [1] "#440154FF" "#482878FF" "#3E4A89FF" "#31688EFF" "#26838EFF"
#  [6] "#1F9D89FF" "#35B779FF" "#6CCE59FF" "#B4DD2CFF" "#FDE725FF"

What it doesn’t do is treat each list element independently. For this you would use

lapply( l, colour_values ) 
# $x
# [1] "#440154FF" "#3B528BFF" "#21908CFF" "#5DC963FF" "#FDE725FF"
# 
# $y
# $y[[1]]
# [1] "#440154FF" "#3B528BFF" "#21908CFF" "#5DC963FF" "#FDE725FF"

What’s the performance like?

10 million numeric values

library(microbenchmark)
library(ggplot2)
library(scales)
library(viridisLite)

n <- 1e7
df <- data.frame(x = rnorm(n = n))

m <- microbenchmark(
  colourvalues = { colourvalues::colour_values(x = df$x) },
  scales = { col_numeric(palette = rgb(subset(viridis.map, opt=="D")[, 1:3]), domain = range(df$x))(df$x) },
  times = 25
)
m
# Unit: seconds
#          expr      min       lq     mean   median       uq       max neval
#  colourvalues 3.339203 3.664397 4.715676 5.026010 5.257869  6.226731    25
#        scales 6.153397 7.201396 8.834126 9.468157 9.907154 12.748400    25

autoplot(m)
# Coordinate system already present. Adding new coordinate system, which will replace the existing one.

1 million characters (26 unique values)

library(microbenchmark)
library(ggplot2)
library(scales)
library(viridisLite)

n <- 1e6
x <- sample(x = letters, size = n, replace = TRUE)
df <- data.frame(x = x)

m <- microbenchmark(
  colourvalues = { x <- colourvalues::colour_values(x = df$x) },
  scales = { y <- col_factor(palette = rgb(subset(viridis.map, opt=="D")[, 1:3]), domain = unique(df$x))(df$x) },
  times = 25
)
m
# Unit: milliseconds
#          expr      min       lq     mean   median       uq       max neval
#  colourvalues 447.7285 488.8479 519.8084 507.0384 526.8926  686.7764    25
#        scales 888.0087 936.6404 972.2149 960.9733 997.1543 1133.9043    25

autoplot(m)
# Coordinate system already present. Adding new coordinate system, which will replace the existing one.

Copy Link

Version

Install

install.packages('colourvalues')

Monthly Downloads

2,173

Version

0.3.1

License

GPL-3

Maintainer

David Cooley

Last Published

November 15th, 2019

Functions in colourvalues (0.3.1)

cividis

Cividis
blue2red

Blue2red
blue2green

Blue2green
bupu

Bupu
blue2yellow

Blue2yellow
blues

Blues
greens

Greens
bugn

Bugn
green2red

Green2red
brbg

Brbg
convert_colour

Convert Colour
cm

Cm
cyan2yellow

Cyan2yellow
greys

Greys
heat

Heat
rainbow

Rainbow
rainbow_hcl

Rainbow_hcl
terrain

Terrain
spectral

Spectral
ylorbr

Ylorbr
colour_values

Colour Values
colour_values_rgb

Colour Values RGB
matlab_like2

Matlab_like2
matlab_like

Matlab_like
piyg

Piyg
heat_hcl

Heat_hcl
ylorrd

Ylorrd
diverge_hsv

Diverge_hsv
diverge_hcl

Diverge_hcl
colour_palettes

Colour Palettes
get_palette

Get Palette
rdpu

Rdpu
plasma

Plasma
rdylbu

Rdylbu
inferno

Inferno
prgn

Prgn
pubu

Pubu
gnbu

Gnbu
oranges

Oranges
terrain_hcl

Terrain_hcl
orrd

Orrd
pubugn

Pubugn
topo

Topo
puor

Puor
show_colours

Show Colours
sequential_hcl

Sequential_hcl
rdbu

Rdbu
ylgn

Ylgn
rdgy

Rdgy
ylgnbu

Ylgnbu
magma

Magma
purples

Purples
magenta2green

Magenta2green
purd

Purd
rdylgn

Rdylgn
reds

Reds
ygobb

Ygobb
viridis

Viridis