Object of class 'kgcm' and 'htest' with the following
components:
statistic
The value of the test statistic.
p.value
The p-value for the hypothesis
parameter
In case X is multidimensional, this is the degrees of
freedom used for the chi-squared test.
hypothesis
String specifying the null hypothesis.
null.value
String specifying the null hypothesis.
method
The string "Generalised covariance measure test".
data.name
A character string giving the name(s) of the data.
rY
Residuals for the Y on Z regression.
rX
Residuals for the X on Z regression.
models
List of fitted regressions if return_fitted_models is TRUE.
Arguments
Y
Vector of response values.
X
Matrix or data.frame of covariates.
Z
Matrix or data.frame of covariates.
reg_YonZ
Character string or function specifying the regression for
Y on Z. See ?regressions for more detail.
reg_XonZ
Character string or function specifying the regression for
X on Z. See ?regressions for more detail.
args_YonZ
A list of named arguments passed to reg_YonZ.
args_XonZ
A list of named arguments passed to reg_XonZ.
B
Number of wild bootstrap samples.
return_fitted_models
Logical; whether to return the fitted regressions
(default is FALSE).
multivariate
Character; specifying which regression can handle
multivariate outcomes ("none", or "XonZ").
If "none", then the regression is run using each column in X as
the response.
bandwidth
Numeric; value of the bandwidth for the Gaussian kernel.
Defaults to NULL, corresponding to the median heuristic.
...
Currently ignored
Details
The kernelized generalised covariance measure test tests whether the weighted
conditional covariance of Y and X given Z is zero.
References
Fernández, T., & Rivera, N. (2024). A general framework for the analysis of
kernel-based tests. Journal of Machine Learning Research, 25(95), 1-40.