R6 object for discrete numeric
R6 object for discrete numeric
comparer::par_hype -> par_discretenum
nameName of the parameter, must match the input to `eval_func`.
valuesValues, discrete numeric
ggtransTransformation for ggplot, see ggplot2::scale_x_continuous()
fromraw()Function to convert from raw scale to transformed scale
R6_par_discretenum$fromraw(x)xValue of raw scale
toraw()Function to convert from transformed scale to raw scale
R6_par_discretenum$toraw(x)xValue of transformed scale
generate()Generate values in the raw space based on quantiles.
R6_par_discretenum$generate(q)qIn [0,1].
getseq()Get a sequence, uniform on the transformed scale
R6_par_discretenum$getseq(n)nNumber of points. Ignored for discrete.
isvalid()Check if input is valid for parameter
R6_par_discretenum$isvalid(x)xParameter value
convert_to_mopar()Convert this to a parameter for the mixopt R package.
R6_par_discretenum$convert_to_mopar(raw_scale = FALSE)raw_scaleShould it be on the raw scale?
new()Create a hyperparameter with uniform distribution
R6_par_discretenum$new(name, values)nameName of the parameter, must match the input to `eval_func`.
valuesNumeric values, must be in ascending order
...not used
clone()The objects of this class are cloneable with this method.
R6_par_discretenum$clone(deep = FALSE)deepWhether to make a deep clone.
Parameter with uniform distribution for hyperparameter optimization
p1 <- R6_par_discretenum$new('x1', 0:2)
class(p1)
print(p1)
Run the code above in your browser using DataLab