R6 class for hyperparameter of discrete (factor) variable
R6 class for hyperparameter of discrete (factor) variable
comparer::par_hype -> par_ordered
nameName of the parameter, must match the input to `eval_func`.
valuesVector of values
ggtransTransformation for ggplot, see ggplot2::scale_x_continuous()
lowerLower bound of the parameter
upperUpper bound of the parameter
fromraw()Function to convert from raw scale to transformed scale
R6_par_ordered$fromraw(x)xValue of raw scale
toraw()Function to convert from transformed scale to raw scale
R6_par_ordered$toraw(x)xValue of transformed scale
fromint()Convert from integer index to actual value
R6_par_ordered$fromint(x)xInteger index
toint()Convert from value to integer index
R6_par_ordered$toint(x)xValue
generate()Generate values in the raw space based on quantiles.
R6_par_ordered$generate(q)qIn [0,1].
getseq()Get a sequence, uniform on the transformed scale
R6_par_ordered$getseq(n)nNumber of points. Ignored for discrete.
isvalid()Check if input is valid for parameter
R6_par_ordered$isvalid(x)xParameter value
convert_to_mopar()Convert this to a parameter for the mixopt R package.
R6_par_ordered$convert_to_mopar(raw_scale = FALSE)raw_scaleShould it be on the raw scale?
new()Create a hyperparameter with uniform distribution
R6_par_ordered$new(name, values)nameName of the parameter, must match the input to `eval_func`.
valuesThe values the variable can take on.
...not used
clone()The objects of this class are cloneable with this method.
R6_par_ordered$clone(deep = FALSE)deepWhether to make a deep clone.
p1 <- par_ordered('x1', c('a', 'b', 'c'))
class(p1)
print(p1)
Run the code above in your browser using DataLab