data(glass)
controlMeasurements = subset(glass, item == "s1")
control = makeCompItem(item ~ logKO + logCaO + logFeO,
data = controlMeasurements[1:6,])
recovered.1 = makeCompItem(item ~ logKO + logCaO + logFeO,
data = controlMeasurements[7:12,])
recoveredMeasurements = subset(glass, item == "s2")
recovered.2 = makeCompItem(item ~ logKO + logCaO + logFeO,
data = recoveredMeasurements[7:12,])
background = makeCompVar(item ~ logKO + logCaO + logFeO, data = glass)
## Same source comparison using a multivariate normal (MVN) approximation
calcLR(control, recovered.1, background)
## Same source comparison using a multivariate kernel density estimate (MVK) approximation
calcLR(control, recovered.1, background, "kde")
## Different source comparison using a multivariate normal (MVN) approximation
calcLR(control, recovered.2, background)
## Different source comparison using a multivariate kernel density estimate (MVK) approximation
calcLR(control, recovered.2, background, "kde")
Run the code above in your browser using DataLab