Learn R Programming

compoisson (version 0.3)

com.fit: Computes COM-Poisson Regression

Description

Computes the maximum likelihood estimates of the COM-Poisson model for given count data.

Usage

com.fit(x)

Arguments

x
matrix of count data

Value

Returns an object containing four fields:
lambda
Estimate of the lambda parameter
nu
Estimate of the nu parameter
z
Normalizing constant
fitted.values
Estimated counts at given levels

Details

The argument x should consist of a matrix where the first column is the level and the second column is the count for the corresponding level.

References

Shmueli, G., Minka, T. P., Kadane, J. B., Borle, S. and Boatwright, P., “A useful distribution for fitting discrete data: Revival of the Conway-Maxwell-Poisson distribution,” J. Royal Statist. Soc., v54, pp. 127-142, 2005.

See Also

com.compute.z, com.loglikelihood

Examples

Run this code
	data(insurance)
	com.fit(Lemaire);

Run the code above in your browser using DataLab