sumMissingProjector(x,...)
## S3 method for class 'acomp':
sumMissingProjector(x,has=is.NMV(x),...)
## S3 method for class 'aplus':
sumMissingProjector(x,has=is.NMV(x),...)
## S3 method for class 'rcomp':
sumMissingProjector(x,has=!(is.MAR(x)|is.MNAR(x)),...)
## S3 method for class 'rplus':
sumMissingProjector(x,has=!(is.MAR(x)|is.MNAR(x)),...)
## S3 method for class 'rmult':
sumMissingProjector(x,has=is.finite(x),...)
missingProjector
generates a list of N square
matrices of dimension DxD (with N and D respectively
equal to the number of rows and columns in x
). Each of these
matrices gives the projection of a data row onto its observed sub-space.
Then, the function sumMissingProjector
takes all these matrices and
sums them in a efficient way, generating a "summary" of observed sub-spaces.missingProjector
,
clr
,rcomp
, aplus
,
princomp.acomp
,
plot.acomp
, boxplot.acomp
,
barplot.acomp
, mean.acomp
,
var.acomp
, variation.acomp
,
cov.acomp
, msd
data(SimulatedAmounts)
sumMissingProjector(acomp(sa.lognormals))
sumMissingProjector(acomp(sa.tnormals))
Run the code above in your browser using DataLab