Learn R Programming

compute.es (version 0.2-2)

chies: Chi-Squared Statistic to Effect Size

Description

Converting Chi-squared ($\chi^2$) statistic with 1 degree of freedom to to an effect size of $d$ (mean difference), $g$ (unbiased estimate of $d$), $r$ (correlation coefficient), $z'$ (Fisher's $z'$), and log odds ratio. The variances, confidence intervals and p-values of these estimates are also computed, along with NNT (number needed to treat), U3 (Cohen's $U_(3)$ overlapping proportions of distributions), CLES (Common Language Effect Size) and Cliff's Delta.

Usage

chies(chi.sq, n, level=95, dig=2, id=NULL, data=NULL)

Arguments

chi.sq
Chi squared statistic from primary study.
n
Sample size in primary study.
level
Confidence level. Default is 95%.
dig
Number of digits to display. Default is 2 digits.
id
Study identifier. Default is NULL, assuming a scalar is used as input. If input is a vector dataset (i.e., data.frame, with multiple values to be computed), enter the name of the study identifier here.
data
name of data.frame. Default is NULL, assuming a scalar is used as input. If input is a vector dataset (i.e., data.frame, with multiple values to be computed), enter the name of the data.frame here.

Value

  • dStandardized mean difference ($d$).
  • var.dVariance of $d$.
  • l.dlower confidence limits for $d$.
  • u.dupper confidence limits for $d$.
  • U3.dCohen's $U_(3)$, for $d$.
  • cl.dCommon Language Effect Size for $d$.
  • cliffs.dCliff's Delta for $d$.
  • p.dp-value for $d$.
  • gUnbiased estimate of $d$.
  • var.gVariance of $g$.
  • l.glower confidence limits for $g$.
  • u.gupper confidence limits for $g$.
  • U3.gCohen's $U_(3)$, for $g$.
  • cl.gCommon Language Effect Size for $g$.
  • p.gp-value for $g$.
  • rCorrelation coefficient.
  • var.rVariance of $r$.
  • l.rlower confidence limits for $r$.
  • u.rupper confidence limits for $r$.
  • p.rp-value for $r$.
  • zFisher's z ($z'$).
  • var.zVariance of $z'$.
  • l.zlower confidence limits for $z'$.
  • u.zupper confidence limits for $z'$.
  • p.zp-value for $z'$.
  • OROdds ratio.
  • l.orlower confidence limits for $OR$.
  • u.orupper confidence limits for $OR$.
  • p.orp-value for $OR$.
  • lORLog odds ratio.
  • var.lorVariance of log odds ratio.
  • l.lorlower confidence limits for $lOR$.
  • u.lorupper confidence limits for $lOR$.
  • p.lorp-value for $lOR$.
  • N.totalTotal sample size.
  • NNTNumber needed to treat.

Details

The chi-squared statistic ($\chi^2$) is defined as $$\chi^2= \sum{\frac{(o-e)^2} {e}}$$ where $o$ is the observed value and $e$ is the expected value. NOTE: This function requires the $\chi^2$ value to have been derived with 1 degree of freedom (indicating 2 independent groups are used in the calculation).

References

Borenstein (2009). Effect sizes for continuous data. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta analysis (pp. 279-293). New York: Russell Sage Foundation. Cohen, J. (1988). Statistical power for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum. Furukawa, T. A., & Leucht, S. (2011). How to obtain NNT from Cohen's d: comparison of two methods. PloS one, 6(4), e19070. McGraw, K. O. & Wong, S. P. (1992). A common language effect size statistic. Psychological Bulletin, 111, 361-365. Valentine, J. C. & Cooper, H. (2003). Effect size substantive interpretation guidelines: Issues in the interpretation of effect sizes. Washington, DC: What Works Clearinghouse.