if (FALSE) {
## Simulate sample of size 100 from a gamma distribution
set.seed(1102006,"Mersenne-Twister")
sampleSize <- 100
shape.true <- 6
scale.true <- 0.012
sampGA <- rgamma(sampleSize,shape=shape.true,scale=scale.true)
sampGAmleGA <- gammaMLE(sampGA)
rbind(est = sampGAmleGA$estimate,se = sampGAmleGA$se,true = c(shape.true,scale.true))
## Estimate the log relative likelihood on a grid to plot contours
Shape <- seq(sampGAmleGA$estimate[1]-4*sampGAmleGA$se[1],
sampGAmleGA$estimate[1]+4*sampGAmleGA$se[1],
sampGAmleGA$se[1]/10)
Scale <- seq(sampGAmleGA$estimate[2]-4*sampGAmleGA$se[2],
sampGAmleGA$estimate[2]+4*sampGAmleGA$se[2],
sampGAmleGA$se[2]/10)
sampGAmleGAcontour <- sapply(Shape, function(sh) sapply(Scale, function(sc) sampGAmleGA$r(sh,sc)))
## plot contours using a linear scale for the parameters
## draw four contours corresponding to the following likelihood ratios:
## 0.5, 0.1, Chi2 with 2 df and p values of 0.95 and 0.99
X11(width=12,height=6)
layout(matrix(1:2,ncol=2))
contour(Shape,Scale,t(sampGAmleGAcontour),
levels=c(log(c(0.5,0.1)),-0.5*qchisq(c(0.95,0.99),df=2)),
labels=c("log(0.5)",
"log(0.1)",
"-1/2*P(Chi2=0.95)",
"-1/2*P(Chi2=0.99)"),
xlab="shape",ylab="scale",
main="Log Relative Likelihood Contours"
)
points(sampGAmleGA$estimate[1],sampGAmleGA$estimate[2],pch=3)
points(shape.true,scale.true,pch=16,col=2)
## The contours are not really symmetrical about the MLE we can try to
## replot them using a log scale for the parameters to see if that improves
## the situation
contour(log(Shape),log(Scale),t(sampGAmleGAcontour),
levels=c(log(c(0.5,0.1)),-0.5*qchisq(c(0.95,0.99),df=2)),
labels="",
xlab="log(shape)",ylab="log(scale)",
main="Log Relative Likelihood Contours",
sub="log scale for the parameters")
points(log(sampGAmleGA$estimate[1]),log(sampGAmleGA$estimate[2]),pch=3)
points(log(shape.true),log(scale.true),pch=16,col=2)
## make a parametric boostrap to check the distribution of the deviance
nbReplicate <- 10000
sampleSize <- 100
system.time(
devianceGA100 <- replicate(nbReplicate,{
sampGA <- rgamma(sampleSize,shape=shape.true,scale=scale.true)
sampGAmleGA <- gammaMLE(sampGA)
-2*sampGAmleGA$r(shape.true,scale.true)
}
)
)[3]
## Get 95 and 99% confidence intervals for the QQ plot
ci <- sapply(1:nbReplicate,
function(idx) qchisq(qbeta(c(0.005,0.025,0.975,0.995),
idx,
nbReplicate-idx+1),
df=2)
)
## make QQ plot
X <- qchisq(ppoints(nbReplicate),df=2)
Y <- sort(devianceGA100)
X11()
plot(X,Y,type="n",
xlab=expression(paste(chi[2]^2," quantiles")),
ylab="MC quantiles",
main="Deviance with true parameters after ML fit of gamma data",
sub=paste("sample size:", sampleSize,"MC replicates:", nbReplicate)
)
abline(a=0,b=1)
lines(X,ci[1,],lty=2)
lines(X,ci[2,],lty=2)
lines(X,ci[3,],lty=2)
lines(X,ci[4,],lty=2)
lines(X,Y,col=2)
}
Run the code above in your browser using DataLab